Math, asked by anitagupta1267, 11 months ago

Express the following in the form p/q where p and q are integers and q is not equal to 0 0.4 par bar +0.18 par bar

Answers

Answered by Swarup1998
23

Given.

The repeating decimal numbers \mathrm{0.\overline{4}} and \mathrm{0.\overline{18}}

To find. their sum

Solution.

First number. \mathrm{0.\overline{4}}

Let \mathrm{x=0.\overline{4}=0.44444.....}

Then \mathrm{10x=4.4444.....}

Now \mathrm{10x-x=4.4444.....-0.4444.....}

\Rightarrow \mathrm{9x=4}

\Rightarrow \mathrm{x=\frac{4}{9}}

\Rightarrow \mathrm{0.\overline{4}=\frac{4}{9}} which is of the form \mathrm{\frac{p}{q}} where \mathrm{p} and \mathrm{q} are integers and \mathrm{q\neq 0}.

Second number. \mathrm{0.\overline{18}}

Let \mathrm{x=0.\overline{18}=0.1818.....}

Then \mathrm{100x=18.1818.....}

Now \mathrm{100x-x=18.1818.....-0.1818.....}

\Rightarrow \mathrm{99x=18}

\Rightarrow \mathrm{x=\frac{18}{99}}

\Rightarrow \mathrm{0.\overline{18}=\frac{18}{99}} which is of the form \mathrm{\frac{p}{q}} where \mathrm{p} and \mathrm{q} are integers and \mathrm{q\neq 0}.

Finding the required sum.

Now \mathrm{0.\overline{4}+0.\overline{18}}

\mathrm{=\frac{4}{9}+\frac{18}{99}}

\mathrm{=\frac{44+18}{99}} where LCM\mathrm{(9,99)=99}

\mathrm{=\frac{62}{99}}

This sum can also be written as \mathrm{0.\overline{62}}.

Answer. \boxed{\mathrm{0.\overline{4}+0.\overline{18}=0.\overline{62}=\frac{62}{99}}}

Answered by sq8005867
1

Answer:

0.4 + 0.18 =0.62

here this is ur answer..

this is too easy!!

Attachments:
Similar questions