Math, asked by vijaydurgadamarla, 1 month ago

express the following in the p/q , where p and q are integers and q is not equal to 0 (1)
1.327 bar is on 2and 7​

Answers

Answered by mathdude500
0

\large\underline{\sf{Solution-}}

Given rational number is

\sf \: 1.3 \overline{27} \\  \\

Let assume that

\sf \: x = 1.3 \overline{27} \\  \\

Multiply by 10 on both sides, we get

\sf \: 10x = 1.3 \overline{27} \times 10 \\  \\

\sf \: 10x = 13. \overline{27} -  -  - (1) \\  \\

\sf \: 10x = 13.272727... \:  \:   \\  \\

Multiply by 100 on both sides, we get

\sf \: 1000x = 13.272727... \times 100 \:  \:   \\  \\

\sf \: 1000x = 1327.2727...  \:  \:   \\  \\

can be rewritten as

\sf \: 1000x = 1327.\overline{27}  -  -  -  - (2)  \:  \:   \\  \\

On Subtracting equation (1) from equation (2), we get

\sf \: 990x = 1314 \\  \\

\sf \: x = \dfrac{1314}{990}  \\  \\

\sf \: \sf \:  \implies \: x = \dfrac{657}{445}  \\  \\

Hence,

\sf \: \bf \:  \implies \: 1.3\overline{27} = \dfrac{657}{445}  \\  \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{{More \: identities}}}} \\ \\ \bigstar \: \bf{ {(x + y)}^{2} =  {x}^{2}  + 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {(x - y)}^{2}  =  {x}^{2} - 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {x}^{2} -  {y}^{2} = (x + y)(x - y)}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  +  {(x - y)}^{2}  = 2( {x}^{2}  +  {y}^{2})}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)}\:\\ \\ \bigstar \: \bf{ {(x - y)}^{3} =  {x}^{3} -  {y}^{3} - 3xy(x - y) }\:\\ \\ \bigstar \: \bf{ {x}^{3}  +  {y}^{3} = (x + y)( {x}^{2}  - xy +  {y}^{2} )}\: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions