Math, asked by suhanisharma0101, 2 months ago

Express the following matrix as the sum of a symmetric and a skew symmetric matrix:. [3 3 -2] [-2 -2 1] [-4 -5 2] These are not different matrices, it's one matrix, I have just used different brackets for different rows.​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that,

\begin{gathered}\rm :\longmapsto\:\sf A=\left[\begin{array}{ccc} 3&3& - 2\\ - 2& - 2&1\\ - 4& - 5&2\end{array}\right]\end{gathered} -  -  - (1)

We know,

\rm :\longmapsto\:A = \dfrac{1}{2}  \times (2A)

\rm \:  =  \:  \: \dfrac{1}{2}(A + A)

\rm \:  =  \:  \: \dfrac{1}{2}(A + A +  {A}^{T} -  {A}^{T} )

\rm \:  =  \:  \: \dfrac{1}{2}(A +{A}^{T}) + \dfrac{1}{2}(A  - {A}^{T})

\rm \:  =  \:  \: P + Q

\bf\implies \:A = P + Q -  - (2)

where,

 \red{\rm :\longmapsto\:P = \dfrac{1}{2}(A +{A}^{T})} -  -  - (3)

and

 \red{\rm :\longmapsto\:Q = \dfrac{1}{2}(A  - {A}^{T})} -  -  - (4)

Now, Given that

\rm :\longmapsto\:A = \begin{gathered}\:\sf \left[\begin{array}{ccc} 3&3& - 2\\ - 2& - 2&1\\ - 4& - 5&2\end{array}\right]\end{gathered}

So,

\rm :\longmapsto\: {A}^{T}  = \begin{gathered}\:\sf \left[\begin{array}{ccc} 3& - 2& - 4\\3& - 2& - 5\\ - 2& 1&2\end{array}\right]\end{gathered}

Now,

Consider,

\rm :\longmapsto\:A +  {A}^{T}

\: \rm \:  = \:\begin{gathered}\:\sf \left[\begin{array}{ccc} 3&3& - 2\\ - 2& - 2&1\\ - 4& - 5&2\end{array}\right]\end{gathered} + \begin{gathered}\:\sf \left[\begin{array}{ccc} 3& - 2& - 4\\3& - 2& - 5\\ - 2& 1&2\end{array}\right]\end{gathered}

\: \rm \:  = \:\begin{gathered}\:\sf \left[\begin{array}{ccc} 6&1& - 6\\1& - 4& - 4\\ - 6& - 4&4\end{array}\right]\end{gathered}

\rm\implies \:\dfrac{1}{2}(A +{A}^{T}) = \begin{gathered}\:\sf \left[\begin{array}{ccc} 3& \frac{1}{2} & - 3\\ \frac{1}{2} & - 2& - 2\\ - 3&  - 2&2\end{array}\right]\end{gathered}

\rm :\implies\:P = \begin{gathered}\:\sf \left[\begin{array}{ccc} 3& \frac{1}{2} & - 3\\ \frac{1}{2} & - 2& - 2\\ - 3&  - 2&2\end{array}\right]\end{gathered}

Now, Consider

\rm :\implies\: {P}^{T}  = \begin{gathered}\:\sf \left[\begin{array}{ccc} 3& \frac{1}{2} & - 3\\ \frac{1}{2} & - 2& - 2\\ - 3&  - 2&2\end{array}\right]\end{gathered} = P

\bf\implies \:P \: is \: symmetric

Consider,

\rm :\longmapsto\:A  -   {A}^{T}

\: \rm \:  = \:\begin{gathered}\:\sf \left[\begin{array}{ccc} 3&3& - 2\\ - 2& - 2&1\\ - 4& - 5&2\end{array}\right]\end{gathered}  -  \begin{gathered}\:\sf \left[\begin{array}{ccc} 3& - 2& - 4\\3& - 2& - 5\\ - 2& 1&2\end{array}\right]\end{gathered}

\: \rm \:  = \:\begin{gathered}\:\sf \left[\begin{array}{ccc} 0&5&2\\ - 5&0& 6\\ - 2& - 6&0\end{array}\right]\end{gathered}

\rm :\implies\:\dfrac{1}{2}(A  - {A}^{T}) = \:\begin{gathered}\:\sf \left[\begin{array}{ccc} 0& \frac{5}{2} &1\\ -  \frac{5}{2} &0& 3\\ - 1& - 3&0\end{array}\right]\end{gathered}

\rm :\implies\:Q = \:\begin{gathered}\:\sf \left[\begin{array}{ccc} 0& \frac{5}{2} &1\\ -  \frac{5}{2} &0& 3\\ - 1& - 3&0\end{array}\right]\end{gathered}

Now,

Consider,

\rm :\implies\: {Q}^{T}  = \:\begin{gathered}\:\sf \left[\begin{array}{ccc} 0&  - \frac{5}{2} & - 1\\\frac{5}{2} &0&  - 3\\1&3&0\end{array}\right]\end{gathered} =  - Q

\bf\implies \:Q \: is \: skew - symmetric

Hence,

Matrix A

\begin{gathered}\rm :\longmapsto\:\sf\left[\begin{array}{ccc} 3&3& - 2\\ - 2& - 2&1\\ - 4& - 5&2\end{array}\right]\end{gathered}

\: \rm \:  = \: \begin{gathered}\:\sf \left[\begin{array}{ccc} 3& \frac{1}{2} & - 3\\ \frac{1}{2} & - 2& - 2\\ - 3&  - 2&2\end{array}\right]\end{gathered} + \:\begin{gathered}\:\sf \left[\begin{array}{ccc} 0& \frac{5}{2} &1\\ -  \frac{5}{2} &0& 3\\ - 1& - 3&0\end{array}\right]\end{gathered}

Similar questions