Math, asked by pulaksaha, 11 months ago

express the following with rational denominator
 \frac{ 2 \sqrt{3}  }{ \sqrt{6 } + 2 }

Answers

Answered by Anonymous
6

\boxed{\sf{ \frac{2 \sqrt{3} }{ \sqrt{6}  + 2}}}

\implies  \sf{\frac{2 \sqrt{3} }{ \sqrt{6} + 2 }  \times  \frac{ \sqrt{6} - 2 }{ \sqrt{6}  - 2}}

\implies \sf{ \frac{2 \sqrt{3}  \times ( \sqrt{6}  - 2)}{6 - 4}}

\implies \sf{ \frac{2 \sqrt{3} \times ( \sqrt{6} - 2)  }{2}}

\implies \sf{\sqrt{3}  \times ( \sqrt{6}  - 2)}

\implies \sf{ \sqrt{18}  - 2 \sqrt{3}}

\implies \sf{3 \sqrt{2}  - 2 \sqrt{3}}

\implies \sf{0.778539}

Note: Check this attachment.

Attachments:
Answered by BrainlyConqueror0901
142

Answer:

\huge{\boxed{\boxed{\sf{ \frac{ 2 \sqrt{3} }{ \sqrt{6 } + 2 } =0.77 }}}}

Step-by-step explanation:

\huge{\boxed{\boxed{\underline{\sf{SOLUTION-}}}}}

\frac{ 2 \sqrt{3} }{ \sqrt{6 } + 2 }  \\  = )\frac{ 2 \sqrt{3} }{ \sqrt{6 } + 2 }  \times  \frac{ (\sqrt{6 }  - 2)}{ \sqrt{6}  - 2}  \\ we \: use \: formula \: in \: denominator \\  {x}^{2} -  {y}^{2}  = (x + y)(x - y)  \\  = ) \frac{2 \sqrt{18}  - 4 \sqrt{3} }{ (\sqrt{6})^{2} - ( {2})^{2}  }  \\  = ) \frac{2 \times 3 \sqrt{2} - 4 \sqrt{3}  }{6 - 4}  \\  = ) \frac{6 \sqrt{2}  - 4 \sqrt{3} }{2}  \\   = ) \frac{2(3 \sqrt{2} - 2 \sqrt{3})  }{2} \\   = ) 3 \times 1.41 - 2 \times 1.73 \\  = )4.23 - 3.46 \\  = )0.77</p><p></p><p>

\huge{\boxed{\boxed{\sf{ \frac{ 2 \sqrt{3} }{ \sqrt{6 } + 2 } =0.77 }}}}

Similar questions