Math, asked by chaudharymehak2800, 6 hours ago

Express the followings terms into the asked ones.​

Attachments:

Answers

Answered by mariamanfred192007
0

Answer:

1. Start with the ratio identity involving sine, cosine, and tangent, and multiply each side by cosine to get the sine alone on the left.

Replace cosine with its reciprocal function.

Solve the Pythagorean identity tan2θ + 1 = sec2θ for secant.

Replace the secant in the sine equation.

2. Sec thetha = 1/ cos theta

= 1sin/theta

Hence sec theta is 1/sin theta

Answered by mathdude500
6

Question :-

Express the following

\rm :\longmapsto\:(i). \:  \: sin\theta \: in \: terms \: of \: tan\theta

\rm :\longmapsto\:(ii). \:  \: sec\theta \: in \: terms \: of \: sin\theta

 \red{\large\underline{\sf{Solution-}}}

Consider,

\rm :\longmapsto\:sin\theta

\rm \:  =  \: \dfrac{1}{cosec\theta}

\rm \:  =  \: \dfrac{1}{ \sqrt{ {cosec}^{2}\theta } }

\rm \:  =  \: \dfrac{1}{ \sqrt{1 +  {cot}^{2}\theta } }

\rm \:  =  \: \dfrac{1}{ \sqrt{1 +  {\bigg(\dfrac{1}{tan\theta} \bigg) }^{2} } }

\rm \:  =  \: \dfrac{1}{ \sqrt{1 +  \dfrac{1}{ {tan}^{2} \theta} } }

\rm \:  =  \: \dfrac{1}{ \sqrt{\dfrac{ {tan}^{2}\theta +  1}{ {tan}^{2} \theta} } }

\rm \:  =  \: \dfrac{tan\theta}{ \sqrt{ {tan}^{2} \theta + 1} }

Hence,

 \red{\rm\implies \:\boxed{\tt{ \rm \: sin\theta =  \: \dfrac{tan\theta}{ \sqrt{ {tan}^{2} \theta + 1} } }}}

 \green{\large\underline{\sf{Solution-ii}}}

Consider

\rm :\longmapsto\:sec\theta

\rm \:  =  \: \dfrac{1}{cos\theta}

\rm \:  =  \: \dfrac{1}{ \sqrt{ {cos}^{2} \theta} }

\rm \:  =  \: \dfrac{1}{ \sqrt{1 -  {sin}^{2} \theta} }

Thus,

 \green{\rm\implies \:\boxed{\tt{ \rm \: sec\theta =  \: \dfrac{1}{ \sqrt{1 -  {sin}^{2} \theta} } }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Identities Used

\boxed{\tt{  {sec}^{2}\theta -  {tan}^{2}\theta = 1}}

\boxed{\tt{  {cosec}^{2}\theta -  {cot}^{2}\theta = 1}}

\boxed{\tt{  {sin}^{2}\theta  + {cos}^{2}\theta = 1}}

\boxed{\tt{ cot\theta =  \frac{1}{tan\theta}}}

\boxed{\tt{ sec\theta =  \frac{1}{cos\theta} }}

\boxed{\tt{ cosec\theta =  \frac{1}{sin\theta} }}

Similar questions