Math, asked by user68, 1 year ago

express the given complex no. in the form a + ib :

i^9 + i^19​

Answers

Answered by ShiningSilveR
8

hey mate ur ans is in the given attachment

Attachments:
Answered by pinquancaro
14

The required form is i^9 + i^{19}=0+0i.

Step-by-step explanation:

Given : Expression i^9 + i^{19}.

To find : Express the given complex no. in the form a + ib ?

Solution :

The expression is re-written as,

i^9 + i^{19}=(i^3)^3+i^{4\times 5-1}

i^9 + i^{19}=(i^2\cdot i)^3+(i^4)^{5}\cdot (i)^{-1}

i^9 + i^{19}=(i^2\cdot i)^3+((i^2)^2)^{5}\cdot (i)^{-1}

We know that, i^2=-1

i^9 + i^{19}=(-i)^3+(1)^{5}\cdot (i)^{-1}

i^9 + i^{19}=-(-i)+\frac{1}{i}

i^9 + i^{19}=\frac{i^2+1}{i}

i^9 + i^{19}=\frac{-1+1}{i}

i^9 + i^{19}=0

The complex number into a+ib form is i^9 + i^{19}=0+0i.

Where, a=0 and b=0

#Learn more  

Express (-51)(1/8i) in x+iy form​

brainly.in/question/10427207

Similar questions