Express the given complex number (-3) in the polar form..
Answers
Answered by
44
༺═──────────────═༻
Solution:
Given, complex number is -3.
Let r cos θ = -3 …(1)
and r sin θ = 0 …(2)
Squaring and adding (1) and (2), we get
r2cos2θ + r2sin2θ = (-3)2
Take r2 outside from L.H.S, we get
r2(cos2θ + sin2θ) = 9
We know that, cos2θ + sin2θ = 1, then the above equation becomes,
r2 = 9
r = 3 (Conventionally, r > 0)
Now, subsbtitute the value of r in (1) and (2)
3 cos θ = -3 and 3 sin θ = 0
cos θ = -1 and sin θ = 0
Therefore, θ = π
Hence, the polar representation is,
-3 = r cos θ + i r sin θ
3 cos π + 3 sin π = 3(cos π + i sin π)
Thus, the required polar form is 3 cos π+ 3i sin π = 3(cos π+i sin π)
༺═──────────────═༻
Answered by
1
Answer:
−3=rcosθ+irsinθ=3cosπ+3sinπ=3(cosπ+isinπ)
mark me as brainliest....
Similar questions