Math, asked by PragyaTbia, 1 year ago

Express the given equation in the form of a + ib, a, b ∈ R i=\sqrt{-1}. State the values of a and b.
\frac{i(4+3i)}{(1-i)}

Answers

Answered by hukam0685
1
To solve this complex expression,first rationalised the denominator

\frac{i(4+3i)}{(1-i)} \times \frac{1 + i}{1 + i} \\ \\since\: {i}^{2} =-1\\\\= \frac{(4i + 3 {i}^{2} )(1 + i)}{( {1)}^{2} - ( {i)}^{2} } \\ \\ = \frac{(4i - 3)(1 + i)}{ {1} + 1 } \\ \\ = \frac{4i + 4 {i}^{2} - 3 - 3i}{2} \\ \\ = \frac{ - 4 - 3 + i}{2} \\ \\ = \frac{ - 7 + i}{2} \\ \\ a + ib= \frac{ - 7}{2} + \frac{i}{2} \\ \\ here \: a = \frac{ - 7}{2} \\ \\ b = \frac{1}{2} \\ \\
Hope it helps you.
Similar questions