Math, asked by PragyaTbia, 1 year ago

Express the given number in the form x + iy.
\sqrt{3}(\cos \frac{\pi}{6}+i\sin \frac{\pi}{6})

Answers

Answered by hukam0685
2
To express the given number in the form x + iy.
\sqrt{3}(\cos \frac{\pi}{6}+i\sin \frac{\pi}{6})

put the value of
 \sin( \frac{\pi}{6} )  =  \frac{1}{2}  \\  \\  \cos( \frac{\pi}{6} )  =  \frac{ \sqrt{3} }{2}  \\  \\
\sqrt{3}(\cos \frac{\pi}{6}+i\sin \frac{\pi}{6}) \\  \\  = \sqrt{3}( \frac{ \sqrt{3} }{2}+i \frac{1}{2}) \\  \\  x + iy= ( \frac{3}{2}  + i \frac{ \sqrt{3} }{2} ) \\  \\ here \\  \\ x =  \frac{3}{2}  \\  \\ y =  \frac{ \sqrt{3} }{2}  \\  \\
Hope it helps you.
Similar questions