Math, asked by saihaneesh28, 2 months ago

express the integration of the given function with respect to dx

Attachments:

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\displaystyle\int\sf \: \dfrac{cosx \:  +  \: x \: sinx}{x(x + cosx)} \: dx

Let assume that

\rm :\longmapsto\:I \:  =  \: \displaystyle\int\sf \: \dfrac{cosx \:  +  \: x \: sinx}{x(x + cosx)} \: dx

On adding and Subtracting 'x' in numerator, we get

\rm :\longmapsto\:I \:  =  \: \displaystyle\int\sf \: \dfrac{cosx \:  +  \: x \: sinx \:  + x \:  -  \: x}{x(x + cosx)} \: dx

On rearranging the terms in numerator,

\rm :\longmapsto\:I \:  =  \: \displaystyle\int\sf \: \dfrac{(x + cosx) \:  +  (\: x \: sinx  \:  -  \: x)}{x(x + cosx)} \: dx

\rm :\longmapsto\:I \:  =  \: \displaystyle\int\sf \: \dfrac{(x + cosx) \: -  \: x  (\: 1  - \: sinx)}{x(x + cosx)} \: dx

On splitting, we get

\rm :\longmapsto\:I \:  =  \: \displaystyle\int\sf \: \dfrac{(x + cosx)}{x(x + cosx)} \: dx \:  - \: \displaystyle\int\sf \: \dfrac{x(1 -  sinx)}{x(x + cosx)} \: dx

\rm :\longmapsto\:I \:  =  \: \displaystyle\int\sf \: \dfrac{1}{x} \: dx \:  - \: \displaystyle\int\sf \: \dfrac{1 -  sinx}{x + cosx} \: dx

We know,

\red{ \boxed{ \bf \: \displaystyle\int\sf \:  \frac{1}{x}dx =  log(x) + c}}

\red{ \boxed{ \bf \: \displaystyle\int\sf \:  \frac{f'(x)}{f(x)}dx =  log(f(x)) + c}}

So, apply these results, we get

\rm :\implies\:I \:  =  \:  log(x) -  log(x  + cosx)  + c

\red{\bigg \{ \because \: \dfrac{d}{dx}(x + cosx) = 1 - sinx \bigg \}}

\bf :\implies\:I = log \: \bigg(\dfrac{x}{x + cosx} \bigg)  + c

Additional Information :-

\rm :\longmapsto\:\displaystyle\int\sf \: cosx \: dx \:  =  \: sinx \:  +  \: c

\rm :\longmapsto\:\displaystyle\int\sf \: sinx \: dx \:  =   - \: cosx \:  +  \: c

\rm :\longmapsto\:\displaystyle\int\sf \: secx \: dx \:  =   \: log(secx  + tanx)\:  +  \: c

\rm :\longmapsto\:\displaystyle\int\sf \: cosecx \: dx \:  =   \: log(cosecx - cotx)\:  +  \: c

\rm :\longmapsto\:\displaystyle\int\sf \: tanx \: dx \:  =   \: log(secx)\:  +  \: c

\rm :\longmapsto\:\displaystyle\int\sf \: cotx \: dx \:  =   \: log(sinx)\:  +  \: c

Similar questions