Express the linear equation 3=2x in the form of ax+by+c=0 & indicate the values of a,b and c. Also give the graphical representation of the in one variable and two variable.
Step by step explanation
Answers
Answer:
Answer:
Step-by-step explanation:
माना कि
y=\dfrac{\sin x + \cos x}{\sin x - \cos x}y=
sinx−cosx
sinx+cosx
\begin{gathered}\dfrac{dy}{dx} =\dfrac{(sinx-cosx)\dfrac{d}{dx} (sinx+cosx)-(sinx+cosx)\dfrac{d}{dx}(sinx-cosx)}{(sinx-cosx)^2}\\ \\=\dfrac{(sinx-cosx)(cosx-sinx)-(sinx+cosx)(cosx+sinx)}{(sinx-cosx)^2}\\\\=\dfrac{-(cosx-sinx)^2-(sinx+cosx)^2}{(sinx-cosx)^2}\\\\=\dfrac{-(cos^2x+sin^2x-2cosxsinx)-(cos^2x+sin^2x+2sinxcosx)}{(sinx-cosx)^2}\\\\=\dfrac{-(1-2sinxcosx)-(1+2sinxcosx)}{(sinx-cosx)^2}\\\\=\dfrac{-1+2sinxcosx-1-2sinxcosx}{(sinx-cosx)^2}\\\\=\dfrac{-2}{(sinx-cosx)^2}\end{gathered}
dx
dy
=
(sinx−cosx)
2
(sinx−cosx)
dx
d
(sinx+cosx)−(sinx+cosx)
dx
d
(sinx−cosx)
=
(sinx−cosx)
2
(sinx−cosx)(cosx−sinx)−(sinx+cosx)(cosx+sinx)
=
(sinx−cosx)
2
−(cosx−sinx)
2
−(sinx+cosx)
2
=
(sinx−cosx)
2
−(cos
2
x+sin
2
x−2cosxsinx)−(cos
2
x+sin
2
x+2sinxcosx)
=
(sinx−cosx)
2
−(1−2sinxcosx)−(1+2sinxcosx)
=
(sinx−cosx)
2
−1+2sinxcosx−1−2sinxcosx
=
(sinx−cosx)
2
−2
Answer:
answer below ask me if you have any doubt
coefficient of x is 2
coefficient of y is 0
and constant term is= -3