Math, asked by farhan0784, 7 months ago

Express the ratios cos A, tan A and sec A in the terms of sin A.​

Answers

Answered by Anonymous
8

Answer:

Since

cos²A+sin²A=1

Therefore,

cos²A = 1-sin²A, i.e., cosA =  \frac{ + }{}  \sqrt{1 - sin {}^{2} \: a }

This gives

cosA =  \sqrt{1 - sin {}^{2} a}

Hence,

tanA =  \frac{sin \: a}{cos \: a}  =  \frac{sin \: a}{ \sqrt{1 - sin {}^{2} }  \: a}

, sec A =  \frac{1}{cos \: a}  =  \frac{1}{ \sqrt{1 - sin {}^{2} } a}

Answered by ayushmaurya3098
0

Answer:

Answer:

Since

cos²A+sin²A=1

Therefore,

cos²A = 1-sin²A, i.e., cosA = \frac{ + }{} \sqrt{1 - sin {}^{2} \: a }

+

1−sin

2

a

This gives

cosA = \sqrt{1 - sin {}^{2} a}

1−sin

2

a

Hence,

tanA = \frac{sin \: a}{cos \: a} = \frac{sin \: a}{ \sqrt{1 - sin {}^{2} } \: a}

Similar questions