express the trignometry ratios sinA and secA in terms of cot A
Answers
Answered by
5
~Sin A
sin A/Cos A = tan A
Sin A = tan A cos A
Sin A = tan A (1/ sec A)
tan² A + 1 = Sec² A
=> Sec² A =+- √[tan²A +1]
Substitute in Sin equation
Sin A = tan A {1/[+-√(tan²A +1)]}
Sin A= tan A/+-√[tan² A +1]
tan A = 1/Cot A
Substitute in Sin equation
Sin A =(1/cot A)/+-√[(1/cot A)²+1]
Simplify
Sin A = {(1/cot A)}/{+-√(1+cot²A)/cot A}
sin A/Cos A = tan A
Sin A = tan A cos A
Sin A = tan A (1/ sec A)
tan² A + 1 = Sec² A
=> Sec² A =+- √[tan²A +1]
Substitute in Sin equation
Sin A = tan A {1/[+-√(tan²A +1)]}
Sin A= tan A/+-√[tan² A +1]
tan A = 1/Cot A
Substitute in Sin equation
Sin A =(1/cot A)/+-√[(1/cot A)²+1]
Simplify
Sin A = {(1/cot A)}/{+-√(1+cot²A)/cot A}
Similar questions