express the trigonometric ratios sin A, sec A and Tan A in terms of cot A
Answers
Answered by
3
We have
1]cosec
2
A−cot
2
A=1
⇒cosec
2
A=1+cot
2
A
⇒(cosecA)
2
=cot
2
A+1
⇒(
sinA
1
)
2
=cot
2
+1
⇒(sinA)
2
=
cot
2
A+1
1
⇒sinA=±
cot
2
A+1
1
We reject the negative value of sinA for acute angle A. Therefore sinA=
cot
2
A+1
1
2]tanA=
cotA
1
3]We have sec
2
A−tan
2
A=1
⇒sec
2
A=1+tan
2
A
⇒sec
2
A=1+
cot
2
A
1
=
cot
2
A
cot
2
A+1
⇒secA=
cotA
cot
2
A+1
- plz follow me and thank my answers ❤❤❤
Answered by
0
(1) We know that
cosec^2A − cot^2A = 1
⇒ cosec^2A = 1+ cot^2A
⇒cosecA= 1 ÷ (√1+cot^2A)
⇒ sinA =1 ÷ (√1+cot2A)
{ °•° sinA=1 ÷ cosecA }
_______________________
(2) We know that
sec^2A −tan^2A = 1
⇒sec^2A=1+tan^2A
⇒sec^2A =1+1 ÷ cot^2A
=cot^2A+1 ÷ cot^2A
⇒secA= (√1+cot^2A) ÷ cotA
_______________________
(3) We know that tanA=1 ÷ cotA
_______________________
Similar questions
Social Sciences,
4 months ago
Political Science,
4 months ago
Math,
8 months ago
Computer Science,
8 months ago
Physics,
11 months ago
Biology,
11 months ago
Social Sciences,
11 months ago