Math, asked by rishavjaat71, 14 days ago

Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.Solution:​

Answers

Answered by Mriyapate71
4

Step-by-step explanation:

this is ur ans hope it's hlp you

Attachments:
Answered by KnightLyfe
15

Answer:

\sf{sin\: A=\dfrac{1}{\sqrt{1+{cot}^{2}A}}}

\sf{sec\: A=\dfrac{\sqrt{{cot}^{2}A+1}}{cot\: A}}

\sf{tan\: A=\dfrac{1}{cot\: A}}

Step-by-step explanation:

We've been asked to calculate the sin A, sec A and tan A in terms of cot A.

Let us firstly calculate sin A, in terms of cot A.

We know, cosec²A is the sum of one and cot² A. So, in order to find the value of sin A in terms of cot A, firstly we need to calculate the value of cosec A.

\twoheadrightarrow\quad\sf{{cosec}^{2}A=1+{cot}^{2}A}

Transposing the square from LHS to RHS,

\twoheadrightarrow\quad\sf{cosec\: A=\sqrt{1+{cot}^{2}A}}

We've calculated the value of cosec A. As, we know, sin A equals to the reciprocal of cosec A.

\twoheadrightarrow\quad\sf{sin\: A=\dfrac{1}{cosec\: A}}

Substituting value of cosec A.

\twoheadrightarrow\quad\bold{sin\: A=\dfrac{1}{\sqrt{1+{cot}^{2}A}}}

Therefore, the value of sin A in terms of cot A is, 1/√(1+cot²A)

Now, let us calculate the value of sec A. We know, sec²A equals to the sum of one and tan²A.

\twoheadrightarrow\quad\sf{{sec}^{2}A=1+{tan}^{2}A}

Transposing the square from LHS to RHS.

\twoheadrightarrow\quad\sf{sec\: A=\sqrt{1+{tan}^{2}A}}

We know, that tan A equals to the reciprocal of cot A.

\twoheadrightarrow\quad\sf{sec\: A=\sqrt{1+{\left(\dfrac{1}{cot}\right)}^{2}}}

After futher solving,

\twoheadrightarrow\quad\sf{sec\: A=\sqrt{1+\left(\dfrac{1}{{cot}^{2}A}\right)}}

Performing LCM inside the square root.

\twoheadrightarrow\quad\sf{sec\: A=\sqrt{\dfrac{{cot}^{2}A+1}{{cot}^{2}A}}}

After futher solving.

\twoheadrightarrow\quad\bold{sec\: A=\dfrac{\sqrt{{cot}^{2}A+1}}{cot\: A}}

Therefore value of sec A in terms of cot A equals to √(cot²A+1)/cotA.

Now, let us calculate the value of tan A in terms of cot A. we know, tan A equals to the reciprocal of cot A.

\twoheadrightarrow\quad\bold{tan\: A=\dfrac{1}{cot\: A}}

Therefore, value of tan A in terms of cot A equals to 1/cot A.

Similar questions