Math, asked by devirajvanshi23, 10 hours ago

Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.​

Answers

Answered by anmol19400330
3

HAVE A NICE DAY!!!

HOPE IT HELPS YOU!!!

Attachments:
Answered by Xennial
48

Solution :-

╰► \: 1 +  {cotA} \: ^{2}  =  { cosec \: A }^{2}

 \: 1 +  {cot \: A}^{2}  =  \dfrac{1}{   {sin}^{2}A }

━━━━━━━━━━━━━━━━━━━━

╰►\: {sin}^{2} A =  \dfrac{1}{1 +  {cot}^{2}A }

 \: sinA =  \dfrac{1}{ \sqrt{1 +  {cot}^{2}A } }

━━━━━━━━━━━━━━━━━━━━

╰► \: secA \:  =  \dfrac{1}{cosA}

sec \: A =  \dfrac{1}{ \sqrt{1 -  {sin}^{2}A } }

sec \: A =  \dfrac{1}{ \sqrt{1  -  \frac{1}{1 +  {cos}^{2} A} } }

sec \: A =  \dfrac{ \sqrt{1} }{ \sqrt{cot \: A} }

━━━━━━━━━━━━━━━━━━━━

╰► \: tan \: A \:  =  \dfrac{1}{cot \: A}

Points to remember :-

⟼ \: 1 +   {cot}^{2} A =  {cosec}^{2} A

⟼ \: sec \: A =  \dfrac{1}{cosA}

⟼ {sin}^{2} A  +  {cos}^{2} A = 1

⟼ \: 1 +  {tan}^{2} A =  {sec}^{2}A

Similar questions