Math, asked by bhumirwt, 7 months ago

Express the trigonometric ratios sinA , secA and tanA in terms of cotA.​

Answers

Answered by rukumanikumaran
2

hope this helps u

tanA=sinA/cosA  

cotA=cosA/sinA  

therefore tanA=1/cotA  

using the identity cosec^2A-cot^2A=1  

we get cosec^2A=1+cot^2a  

1/sin^2A=1+cot^2A  

sin^2A=1/1+cot^2A  

sinA=(1/1+cot^2A)^1/2  

using identity sec^2A-tan^2A=1  

we get  

sec^2A=1+tan^2A  

sec^2A=1+1/cot^2A  

sec^2A=cot^2A+1/cot^2A  

secA=(cot^2A+1/cot^2A)^1/2

pls mark as brainliest

Answered by Anonymous
16

 \bold {cosec²A - cot²A = 1}

 \implies cosec²A = 1 + cot²A

\implies sin²A = (\frac{1}{1+cot²A})

 \implies sinA = ± \sqrt { (\frac{1}{1+cot²A})}

Now ,

 \implies sin²A = (\frac {1}{1+cot²A})

 \implies 1-cos2A = (\frac{1}{cot²A})

 \implies cos²A=1-(\frac{1}{1+cot²A})

 \implies cos²A = (\frac {cot²A}{1+cot²A})

 \implies sec²A = (\frac{1+cot²A}{cot²A}) = 1 + (\frac{1}{cot²A})

 \implies secA = ± \sqrt {1+(\frac{1}{cot²A})}

And , tanA. cotA  = 1

 \implies tanA = (\frac{1}{cotA})

Similar questions