Math, asked by tannusonakiya, 1 year ago

express the trigonometry ratio sin A, sac A , and tan A in term of cot A


sohil88: sinA=1/√1+cot2A. secA=√cot2A+1/cotA. tanA=1/cot

Answers

Answered by tuka81
2

An equation Involving trigonometric ratios of angle is called a trigonometry identity, if it is true for all values of the angles involved for any acute angle (A) we have 3 identities.

sin²A + cos²A= 1

1 + tan²A= sec²A

cot²A+ 1 = cosec²A

________________________________________________________

Solution:

1)

sinA= 1/cosecA = 1 / √(1+cot²A)

[ cot²A+ 1 = cosec²A,

cosecA= √( 1+cot²A)]

2)

tanA= 1/cotA

3)

secA= √(1+tan²A)

[sec²A= 1+tan²A , secA= √ (1+tan²A)]

secA= √(1+ (1/cot²A)) = √ (1+1/ cot²A)

secA = √(cot²A+1/cot²A)

secA= √1+cot²A/ (cotA)

================================================================

Hope this will help you...

please mark me as brsinliest


tannusonakiya: thank you
Answered by poweruffgirls11228
0

An equation Involving trigonometric ratios of angle is called a trigonometry identity, if it is true for all values of the angles involved for any acute angle (A) we have 3 identities.

sin²A + cos²A= 1

1 + tan²A= sec²A

cot²A+ 1 = cosec²A

________________________________________________________

Solution:

1)

sinA= 1/cosecA = 1 / √(1+cot²A)

[ cot²A+ 1 = cosec²A,

cosecA= √( 1+cot²A)]

2)

tanA= 1/cotA

3)

secA= √(1+tan²A)

[sec²A= 1+tan²A , secA= √ (1+tan²A)]

secA= √(1+ (1/cot²A)) = √ (1+1/ cot²A)

secA = √(cot²A+1/cot²A)

secA= √1+cot²A/ (cotA)

================================================================

Hope this will help you....


tannusonakiya: thank yyou
sohil88: OK. konsi
sohil88: class me ho
Similar questions