Math, asked by rehaan76, 9 months ago

express the trigonometry ratios sin A,sec A,and tan A in terms of cot A​

Answers

Answered by Anonymous
7

\large\red{\underline{{\boxed{\textbf{QuestioN}}}}}

Express the trignometry ratios sin A, sec A, and tan A , in terms of cot A.

\large\pink{\underline{{\boxed{\textbf{Brainliest\:AnswerR}}}}}

➡Sin A , sec A, tan A, in term of cotA .

firstly ,

✏tan A = \frac{1}{cot A}

(1 + tan²= A = sec²= A)

Sec²A = 1 + tan² A

sec² A= 1 + \frac{1}{cot A²}

sec²A= \frac{1}{1} + \frac{1}{cot²A}

sec²A = \frac{cot²A+1}{cot²A}

sec²A= \frac{\sqrt{cot²A+1}{cot²A}

sec A= \frac{\sqrt{cot²A+1}{cot+A}

➡cosA =\frac{cot + A}{\sqrt{cot²A+1}}

sin²A = \frac{1 + cot A²}{\sqrt{cot²A +1}}

sin²A=\frac{cot²A+1-cot²A}{cot²A+1}

sin²A = \frac{1}{cot²A+1}

sinA=\sqrt{\frac{1}{cot²A+1}}

sinA=\frac{1}{\sqrt{cot²+A+1}}

➡sin²A + cos²A =1

Sin²A= 1-cos²A

_________________

if there is any mistake in my sum you can see the attachment

Attachments:
Similar questions