Math, asked by darshanSongara, 1 year ago

Express this complex number in the form of a + ib

i^-39 ( i to the power of negative 39 )
 {i }^{ - 39}

Attachments:

Answers

Answered by TheBossHere
6

Answer:

the representation is 0+1i

Step-by-step explanation:

1/i^39=1/(1×-1×i)

=-1/i

=i²/i=i

Answered by AssasianCreed
5

 \green {\underline { \underline \bold {Answer :  - }}}

  •  \iota

 \red{  \bf \underline{ \underline   {Step-by-step  \: explanation:-}} }

 \\   \:  \:  \:  \:  \:  \:  \:  \:  \: \tt =  \dfrac{1}{ { \iota}^{39} }  =   \frac{1}{ { { (\iota}^{2} )}^{9}  \times  { \iota}^{3} }

 \\   \:  \:  \:  \:  \:  \:  \:  \:  \: \tt =   \frac{1}{ {(1)}^{9}  \times  { \iota}^{3} }  =  \frac{1}{ { \iota}^{3} }  =  \frac{1}{ -  \iota}

\\   \:  \:  \:  \:  \:  \:  \:  \:  \: \tt =   \frac{1}{ -  \iota}  \times  \frac{ \iota}{ \iota}  =  \frac{ \iota}{ -  { \iota}^{2} }

\\   \:  \:  \:  \:  \:  \:  \:  \:  \: \tt =   \frac{ \iota}{ - ( - 1)}  =  \frac{ \iota}{1}  =  \iota

Similar questions