Math, asked by utsavgoel29, 4 months ago

express this in the form of a + ib {( 1/3) + 3i }

Answers

Answered by savitha778
1

Answer:

1/The required form is (\frac{1}{3}+3i)^3=-\frac{242}{27}-26i(

3

1

+3i)

3

=−

27

242

−26i .

Step-by-step explanation:

Given : Expression (\frac{1}{3}+3i)^3(

3

1

+3i)

3

.

To find : Express the given complex number in the form a + ib ?

Solution :

Using algebraic identity to solve the expression,

(a+b)^3=a^3+b^3+3a^2b+3ab^2(a+b)

3

=a

3

+b

3

+3a

2

b+3ab

2

Here, a=\frac{1}{3},\ b=3ia=

3

1

, b=3i

Substitute the value,

(\frac{1}{3}+3i)^3=(\frac{1}{3})^3+(3i)^3+3(\frac{1}{3})^2(3i)+3(\frac{1}{3})(3i)^2(

3

1

+3i)

3

=(

3

1

)

3

+(3i)

3

+3(

3

1

)

2

(3i)+3(

3

1

)(3i)

2

(\frac{1}{3}+3i)^3=\frac{1}{27}+27i^3+i+9i^2(

3

1

+3i)

3

=

27

1

+27i

3

+i+9i

2

We know that, i^2=-1i

2

=−1

(\frac{1}{3}+3i)^3=\frac{1}{27}+27(-1)i+i+9(-1)(

3

1

+3i)

3

=

27

1

+27(−1)i+i+9(−1)

(\frac{1}{3}+3i)^3=\frac{1}{27}-27i+i-9(

3

1

+3i)

3

=

27

1

−27i+i−9

(\frac{1}{3}+3i)^3=\frac{1-243}{27}-26i(

3

1

+3i)

3

=

27

1−243

−26i

(\frac{1}{3}+3i)^3=-\frac{242}{27}-26i(

3

1

+3i)

3

=−

27

242

−26i

In form of a+ib the required answer is (\frac{1}{3}+3i)^3=-\frac{242}{27}-26i(

3

1

+3i)

3

=−

27

242

−26i

where, a=-\frac{242}{27}a=−

27

242

and b=-26

Similar questions