Math, asked by vanshikagupta, 1 year ago

Express this with rational denominator b2/root of (a2+b2)+a
Source: RD Sharma Class 9 Ex 3.2 Q3 Part 9

Answers

Answered by amitnrw
10

Given :   b²/(√(a² + b²) + a )

To find : Rationalize

Solution:

b²/(√(a² + b²) + a )

multiply numerator & denominator with (√(a² + b²) - a )  

= b² x  (√(a² + b²) - a )  / (√(a² + b²) + a ) x (√(a² + b²) - a )  

using (x + y)(x - y) = x² - y²

x  = √(a² + b²)

y = a

=> x²  = a² + b²

   y² = a²

=> x² - y² = a² + b² - a² = b²

Substituting these values in denominator

= b² x  (√(a² + b²) - a )  / b²

= (√(a² + b²) - a )

= √(a² + b²)  - a

b²/(√(a² + b²) + a )  = √(a² + b²)  - a

Learn More:

rationalize the denominator of 4root3/5root5 and hence find their ...

https://brainly.in/question/17248397

1 by root 9 - root 8 is - Brainly.in

https://brainly.in/question/17507394

(a) Rationalize the denominator: 14/ 5√3 − √5 Please Send ...

https://brainly.in/question/5471829

Answered by Ryspawn
3

Answer:

b²/(√(a² + b²) + a )

multiply numerator & denominator with (√(a² + b²) - a )  

= b² x  (√(a² + b²) - a )  / (√(a² + b²) + a ) x (√(a² + b²) - a )  

using (x + y)(x - y) = x² - y²

x  = √(a² + b²)

y = a

=> x²  = a² + b²

  y² = a²

=> x² - y² = a² + b² - a² = b²

= b² x  (√(a² + b²) - a )  / b²

= (√(a² + b²) - a )

= √(a² + b²)  - a

b²/(√(a² + b²) + a )  = √(a² + b²)  - a

Step-by-step explanation:

Similar questions