express trignometric ratios sinA,secA,and tanA in terms of cotA
Answers
Answered by
23
tanA=sinA/cosA
cotA=cosA/sinA
therefore
tanA=1/cotA
using the identity cosec^2A-cot^2A=1
we get cosec^2A=1+cot^2a
1/sin^2A=1+cot^2A
sin^2A=1/1+cot^2A
sinA=(1/1+cot^2A)^1/2
using identity sec^2A-tan^2A=1
we get
sec^2A=1+tan^2A
sec^2A=1+1/cot^2A
sec^2A=cot^2A+1/cot^2A
secA=(cot^2A+1/cot^2A)^1/2
Answered by
13
we knw that
tanA=sinaA/cosA
cotA=cosA/sinA
so
cotA=1/tanA
tanA.cotA=1
WE ALSO KNW
1+cot^2A=cosec seqA
1+tan seq A=sec seqA
Similar questions