Math, asked by AnumehaChauhan463, 1 year ago

express trignometric ratios sinA,secA,and tanA in terms of cotA

Answers

Answered by nandhinimouli
23

tanA=sinA/cosA 
cotA=cosA/sinA 
therefore
                            tanA=1/cotA 

using the identity cosec^2A-cot^2A=1 
we get cosec^2A=1+cot^2a 
1/sin^2A=1+cot^2A 
sin^2A=1/1+cot^2A 
                           sinA=(1/1+cot^2A)^1/2 


using identity sec^2A-tan^2A=1 
we get 
sec^2A=1+tan^2A 
sec^2A=1+1/cot^2A 
sec^2A=cot^2A+1/cot^2A 

                                  secA=(cot^2A+1/cot^2A)^1/2



Answered by Gurudev
13
we knw that tanA=sinaA/cosA cotA=cosA/sinA so cotA=1/tanA tanA.cotA=1 WE ALSO KNW 1+cot^2A=cosec seqA 1+tan seq A=sec seqA
Similar questions