Math, asked by dineshmali190yf, 2 months ago

Express trigonometric ratio sec A in terms of cot A.​

Answers

Answered by varadad25
2

Answer:

\displaystyle{\boxed{\red{\sf\:\sec\:A\:=\:\dfrac{\sqrt{\cot^2\:A\:+\:1}}{\cot\:A}}}}

Step-by-step-explanation:

We have to express the trigonometric ratio sec A in terms of cot A.

We know that,

\displaystyle{\pink{\sf\:1\:+\:\tan^2\:A\:=\:\sec^2\:A}}

\displaystyle{\implies\sf\:\sec\:A\:=\:\sqrt{\:1\:+\:\tan^2\:A}}

\displaystyle{\implies\sf\:\sec\:A\:=\:\sqrt{1\:+\:\left(\:\dfrac{1}{\cot\:A}\:\right)^2}\:\qquad\dots\:\left[\:\tan\:A\:=\:\dfrac{1}{\cot\:A}\:\right]}

\displaystyle{\implies\sf\:\sec\:A\:=\:\sqrt{1\:+\:\dfrac{1}{\cot^2\:A}}}

\displaystyle{\implies\sf\:\sec\:A\:=\:\sqrt{\dfrac{\cot^2\:A\:+\:1}{\cot^2\:A}}}

\displaystyle{\implies\sf\:\sec\:A\:=\:\dfrac{\sqrt{\cot^2\:A\:+\:1}}{\sqrt{\cot^2\:A}}}

\displaystyle{\implies\underline{\boxed{\red{\sf\:\sec\:A\:=\:\dfrac{\sqrt{\cot^2\:A\:+\:1}}{\cot\:A}}}}}

Answered by stbranham2007
6

Answer:

  • We have to express the trigonometric ratio sec A in the terms of cot A..

We know that,

  • 1 + tan2 A = sec2 A

=> sec A = √ 1 + tan2

=> sec A = √ 1 + ( 1 / cot A)2

=> sec A = √ 1 + 1 / cot2 A

=> sec A = √ cot2 A+1 / √ cot2 A

=> sec A = √ cot2 A+1 / cot A

Similar questions