Math, asked by lakshmi4041, 1 year ago

Express with rational denominator i) 1÷√6+√7+√13

Answers

Answered by Vishalkannaujiya
2
1/(√7+√6-√13)

Rationalising factor = √7+√6+√13

→ 1/(√7+√6-√13) × √7+√6+√13/(√7+√6+√13)

→ √7+√6+√13/(√7+√6-√13)(√7+√6+√13)

→ √7+√6+√13/(√7+√6)²-(√13)²

→ √7+√6+√13/(√7²+√6²+2(√7)(√6))-13

→ √7+√6+√13/13+2√42-13

→ √7+√6+√13/2√42

The denominator is still irrational. So we have to rationalise it further

Now rationalising factor = √42

→ √7+√6+√13/2√42 × √42/√42

→ √42(√7+√6+√13)/2(√42)²

→ √42×7+√42×6+√42×13/2(42)

→ (7√6+6√7+√546)/84

→ 7√6/84 + 6√7/84 + √546/84

→ √6/12 + √7/14 + √546/84

Now the denominator is rationalised.

____________________
Hope It Helps You

lakshmi4041: im in 9
lakshmi4041: and u
Vishalkannaujiya: 10th
lakshmi4041: oh
Vishalkannaujiya: u from
lakshmi4041: nagpur
lakshmi4041: and u
Vishalkannaujiya: AZAMGARH
lakshmi4041: ok
lakshmi4041: bye
Answered by hukam0685
2
Hello,

Solution:

 \frac{1}{ \sqrt{6} +  \sqrt{7} +  \sqrt{13}   }  \\  \\  = \frac{1}{ \sqrt{6} +  \sqrt{7} +  \sqrt{13}   } \times  \frac{ \sqrt{6}  +  \sqrt{7}  -  \sqrt{13} }{\sqrt{6}  +  \sqrt{7}  -  \sqrt{13}}  \\  \\  =  \frac{\sqrt{6}  +  \sqrt{7}  -  \sqrt{13}}{( { \sqrt{6} +  \sqrt{7})  }^{2}  - ( { \sqrt{13} })^{2} }  \\  \\  =  \frac{\sqrt{6}  +  \sqrt{7}  -  \sqrt{13}}{6 + 7 + 2 \sqrt{42} - 13 }  \\  \\  =  \frac{\sqrt{6}  +  \sqrt{7}  -  \sqrt{13}}{2 \sqrt{42} }  \times  \frac{ \sqrt{42} }{ \sqrt{42} }  \\  \\  =  \frac{6 \sqrt{7}  + 7 \sqrt{6} -  \sqrt{13 \times 42}  }{2 \times 42}
is the final answer
Similar questions