Expression 2 cos2α – 1 can be simplified to
Answers
Answer:
sin2α=1−cos2αsin2α=1−cos2α
and express everything in terms of cos2αcos2α:
R=(sin2α)3+(cos2α)3+K((sin2α)2+(cos2α)2)=(1−cos2α)3+(cos2α)3+K((1−cos2α)2+(cos
To Find :- Expression (2•cos²α – 1) can be simplified ?
Solution :-
→ 2•cos²α – 1
putting 1 = sin²α + cos²α we get,
→ 2•cos²α - (sin²α + cos²α)
→ 2•cos²α - sin²α - cos²α
→ 2•cos²α - cos²α - sin²α
→ cos²α - sin²α
→ cosα × cosα - sinα × sinα
using cosA × cosB - sinA × sinB = cos(A + B) and taking A = α , B = α we get,
→ cos(α + α)
→ cos2α
hence, (2•cos²α – 1) can be simplified to cos2α .
Extra knowledge :- Double angle formulas :-
→ Sin 2A = 2•sin A•cos A
→ cos 2A = 2•cos²A - 1 = 1 - 2•sin²A = cos²A - sin²A
→ Tan 2A = (2•tan A) / (1 - tan²A)
Learn more :-
It sino + tano = m
tano - sino an
Then express the
values of m²-n² in terms
of M and N
https://brainly.in/question/13926306
tanA/(1-cotA) + cotA/(1-tanA)
https://brainly.in/question/16775946