Math, asked by Swarnimkumar22, 1 year ago


Expression \frac{tan \: A}{1 - cot \: A}  +  \frac{cot \: A}{1 - tan \: A} can be written :

(a) sinA cosA + 1

(b) secA cosecA + 1

(c) tanA + cotA

(d) secA + cosecA




 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \small \: {@swarnimkumar22}

Attachments:

karan5116: yarrr
karan5116: please
karan5116: please.
Swarnimkumar22: Aree to mai kya karu
karan5116: kuchh nhi bas aap kh do its ok
Swarnimkumar22: anybody else answer that question
Swarnimkumar22: no problem dear it's ok
karan5116: okk
karan5116: good night
Swarnimkumar22: good night take care

Answers

Answered by Anonymous
12
hey mate your answer is here ✌✌

so option b is the right answer
Attachments:

Swarnimkumar22: correct answer
Swarnimkumar22: :-)
Answered by rohitkumargupta
6
HELLO DEAR,

GIVEN:- tanA/(1 - cotA) + cotA/(1 - tanA)

\bold{\implies \frac{sinA/cosA}{1 - cosA/sinA} + \frac{cosA/sinA}{1 - sinA/cosA}}

\bold{\implies \frac{sin^2A}{cosA(sinA - cosA)} + \frac{cos^2A}{sinA(cosA - sinA)}}

\bold{\implies \frac{sin^2A}{cosA(sinA - cosA)} - \frac{cos^2A}{sinA(sinA - cosA)}}

\bold{\implies \frac{sin^3A - cos^3A}{sinA.cosA(sinA - cos)}}

\bold{\implies \frac{\cancel{(sinA - cosA)}(sin^2A + cos^2A + sinAcosA)}{sinA.cosA\cancel{(sinA - cosA)}}}
[as, a³ - b³ = (a - b)(a² + b² + ab) & (sin²θ + cos²θ = 1]

\bold{\implies \frac{(1 + sinA.cosA)}{sinA.cosA}}

\bold{\implies \frac{1}{sinA.cosA} + \frac{sinA.cosA}{sinA.cosA}}

\bold{\implies secA.cosecA + 1}

hence, option (b) is correct

\bold{--------------OR--------------}

\bold{\implies \frac{tanA}{(1 - 1/tanA)} + \frac{(1/tanA)}{(1 - tanA)}}

\bold{\implies \frac{tan^2A}{(tanA - 1)} + \frac{1}{tanA(1 - tanA)}}

\bold{\implies \frac{1}{tan(1 - tanA)} - \frac{tan^2A}{(1 - tanA)}}

\bold{\implies \frac{1 - tan^3A}{tanA(1 - tanA)}}

\bold{\implies \frac{\cancel{(1 - tanA)}\{(1 + tan^2A) + tanA\}}{tanA\cancel{(1 - tanA)}}}

\bold{\implies \frac{sec^2A + tanA}{tanA}}

\bold{\implies \frac{1}{cos^2A}\frac{cosA}{sinA} + \frac{tanA}{tanA}}

\bold{\implies secA.cosecA + 1}

hence, option (b) is correct

I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions