Extracellular matrix structure and function
Answers
Answer:
Extracellular matrix (ECM) is an extensive molecule network composed of three major components: protein, glycosaminoglycan, and glycoconjugate. ECM components, as well as cell adhesion receptors, interact with each other forming a complex network into which cells reside in all tissues and organs.
Explanation:
Extracellular matrix (ECM) is an extensive molecule network composed of three major components: protein, glycosaminoglycan, and glycoconjugate. ECM components, as well as cell adhesion receptors, interact with each other forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, proliferation, migration, differentiation, and some vital role in maintaining cells homeostasis. This chapter emphasizes the complex of ECM structure to provide a better understanding of its dynamic structural and functional characterization and multipotency. In this chapter the implications of ECM in tissue remodeling are mainly discuss on the neuronal regeneration and wound healing mechanism in the presence of human umbilical mesenchymal conditioned medium (HU-MSCM).
The structure and function of extracellular matrix
The structure and function of extracellular matrixAn essential part of the holding capacity of tissues is the extracellular area. The extracellular region is primarily occupied by a complicated network of macromolecules constituent called as extracellular matrix (ECM). The composition of ECM is varied, depends on the species and also developing or ground molecules (Figures 1 and 2). Commonly, the ECM is composed of three major classes of biomolecules; there are glycosaminoglycans (GAGs), linked to a protein known as the proteoglycans, and also fibrous proteins, including collagen, elastin, fibronectin, vitronectin, and laminin.