extreme values of sin power 8x+cos power 8x is
Answers
Step-by-step explanation:
Sin ⁸ x –Cos ⁸ x = ( 1 – 2 Cos²x) ( 1 – 2 Sin²x Cos²x)
LHS
Sin ⁸ x –Cos ⁸ x
= ( Sin⁴ x ) ² – (cos⁴ x) ²
= ( Sin⁴ x - Cos⁴ x ) ( Sin⁴ x + Cos⁴ x )
= ( Sin² x - Cos² x ) ( Sin² x + Cos² x ) ( Sin⁴ x + Cos⁴ x )
= ( Sin² x - Cos² x )(1) ( Sin⁴ x + Cos⁴ x ) as Sin² x + Cos² x=1
writing Sin² x= 1-Cos² x & adding and subtracting 2 Sin² xCos² x in second factor
=(1 - Cos² x -Cos² x )( Sin⁴ x + Cos⁴ x+ 2 Sin² xCos² x - 2 Sin² xCos² x)
= (1 -2 Cos² x) [( Sin² x + Cos² x )² - 2 Sin² xCos² x]
= (1 -2 Cos² x) [( 1)² - 2 Sin² xCos² x] as Sin² x + Cos² x=1
= ( 1 – 2 Cos²x) ( 1 – 2 Sin²x Cos²x)
Given:
sin^8x + cos^8x.
To Find:
The value of the given question.
Solution:
sin^8x + cos^8x.
= (sin^4x)^2 + (cos^4x)^2.
= (sin^4x + cos^4x)(sin^4x + cos^4x).
= [(sin^2x)^2 + (cos^2x)^2][(sin^2x)^2 + (cos^2x)^2].
= [(sin^2x + cos^2x) (sin^2x + cos^2x)] [(sin^2x + cos^2x) (sin^2x + cos^2x)].
Since, sin^2x + cos^2x = 1.
So,
= 1 * 1 * 1 * 1.
= 1.
Hence, the extreme value of sin^8x + cos^8x is 1.