F 3 sin
+5 cos 8 = 5, prove that 5 sin 8- 3 cos 8 = +3.
Answers
Answer:
✌✌mrk brainliest nd thanks me plss✌✌
Step-by-step explanation:
Given:
(3 sinθ+5cosθ)²= 5²
Squaring on both sides.
(3sinθ)²+(5cosθ)²+2× 3sinθ 5cosθ= 25
[a+b= a²+b²+2ab]
9sin²θ+ 25cos²θ+30sinθcosθ= 25
9 (1-cos²θ) + 25(1-sin²θ)+30sinθcosθ=25
[sin²θ + cos²θ =1]
9-9cos²θ + 25-25sin²θ +30sinθcosθ=25
9+25 -(9cos²θ +25sin²θ -30sinθcosθ) =25
34 - (9cos²θ +25sin²θ -30sinθcosθ) =25
- (25sin²θ +9cos²θ-30sinθcosθ) =25-34
(25sin²θ+9cos²θ -30sinθcosθ) =9
(5sinθ - 3cosθ)²= 9
(5sinθ - 3cosθ)= √9
(5sinθ - 3cosθ)= ±3
L.H.S = R.H.S
==================================================================
Hope this will help you..‼️‼️‼️
Step-by-step explanation:
(3sin+5cos)^2=25
9sin^2+30sincos+25cos^2=25
9(1-cos^2)+30sincos+25(1-sin^2)=25
9-9cos^2+30sincos+25-25sin^2=25
9cos^2-30sincos+25sin^2=9
(3cos-5sin)^2=9
3cos-5sin=-3
5sin-3cos=3