Math, asked by shivbp05, 1 month ago

(f) (6x² – 30x – 47) = (2x - 5)​

Attachments:

Answers

Answered by XxItSsMissAayushixX
0

Answer:

If I look up leaderboard as one word in OED, it returns a reference to leader board as two words, which I suppose says something about which they think is correct! I would say those results are inconclusive.

Answered by deepak9140
1

Step-by-step explanation:

Let, p(x)=6x2−31x+47,

Let, p(x)=6x2−31x+47,g(x)=2x−5

Let, p(x)=6x2−31x+47,g(x)=2x−5q(x)=3x−8 

Let, p(x)=6x2−31x+47,g(x)=2x−5q(x)=3x−8 and r=7

Let, p(x)=6x2−31x+47,g(x)=2x−5q(x)=3x−8 and r=7∴ By division algorithm, 

Let, p(x)=6x2−31x+47,g(x)=2x−5q(x)=3x−8 and r=7∴ By division algorithm, p(x)=g(x)×q(x)+r

Let, p(x)=6x2−31x+47,g(x)=2x−5q(x)=3x−8 and r=7∴ By division algorithm, p(x)=g(x)×q(x)+r         =(2x−5)(3x−8)+7

Let, p(x)=6x2−31x+47,g(x)=2x−5q(x)=3x−8 and r=7∴ By division algorithm, p(x)=g(x)×q(x)+r         =(2x−5)(3x−8)+7         =6x2−15x−16x+40+7

Let, p(x)=6x2−31x+47,g(x)=2x−5q(x)=3x−8 and r=7∴ By division algorithm, p(x)=g(x)×q(x)+r         =(2x−5)(3x−8)+7         =6x2−15x−16x+40+7         =6x2−31x+47

Let, p(x)=6x2−31x+47,g(x)=2x−5q(x)=3x−8 and r=7∴ By division algorithm, p(x)=g(x)×q(x)+r         =(2x−5)(3x−8)+7         =6x2−15x−16x+40+7         =6x2−31x+47        =p(x)

Similar questions