f a+b+c = 0, then a^3 + b^3 + c^3 is
Answers
Answered by
0
Answer:
Step-by-step explanation:
Given that,
if a+b+c=0 then a
3
+b
3
+c
3
We know that,
a
3
+b
3
+c
3
=(a+b+c)[a
2
+b
2
+c
2
−ab−bc−ca]+3abc
Put, a+b+c=0
a
3
+b
3
+c
3
=0.[a
2
+b
2
+c
2
−ab−bc−ca]+3abc
a
3
+b
3
+c
3
=3abc
Answered by
0
formula a^3+b^3+c^3=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)
a^3+b^3+c^3
=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)
=0×a^2+b^2+c^2-ab-bc-ca
=0
ans =0
Similar questions