Math, asked by nutamkarthik, 10 months ago

f and g are the zeroes of ax²+bx+c then find f³+g³ ​

Answers

Answered by Uniquedosti00017
1

Answer:

given quadratic equation = ax² + bx + c

sum of zeros = -b/a

=> f + g = -b/a

and

product of zeroes = c/a

=> fg = c/a

now \\  {f}^{3}  +  {g}^{3}  = ( {f + g)}^{3} - 3fg(f + g)  \\  =  { (\frac{ - b}{a}) }^{3}  - 3 \frac{c}{a} ( \frac{ - b}{a} ) \\  =  \frac{ { - b}^{3} }{ {a}^{3} }  +  \frac{3bc}{ {a}^{2} }  \\  =  \frac{ -  {b}^{3 }  + 3abc}{ {a}^{3} }  \\  =  \frac{3abc -  {b}^{3} }{ {a}^{3} } .

Similar questions