f for non zero x : 2 f(x) + 3 f(1/x) = x find find f(2) class 11
Answers
Answer :
f(2) = -1/2
Solution :
- Given : 2f(x) + 3f(1/x) = x
- To find : f(2) = ?
We have ;
2f(x) + 3f(1/x) = x ---------(1)
Now ,
Replacing x by 1/x in eq-(1) , we get ;
=> 2f(1/x) + 3f( 1/(1/x) ) = 1/x
=> 2f(1/x) + 3f(x) = 1/x
=> 3f(x) + 2f(1/x) = 1/x -------(2)
Now ,
Multiple eq-(1) by 2 , we get ;
=> 2•[ 2f(x) + 3f(1/x) ] = 2•x
=> 4f(x) + 6f(1/x) = 2x ---------(3)
Also ,
Multiplying eq-(2) by 3 , we get ;
=> 3•[ 3f(x) + 2f(1/x) ] = 3•(1/x)
=> 9f(x) + 6f(1/x) = 3/x --------(4)
Now ,
Subtracting eq-(3) from (4) , we get ;
=> [9f(x) + 6f(1/x)] - [4f(x) + 6f(1/x)] = 3/x - 2x
=> 9f(x) + 6f(1/x) - 4f(x) - 6f(1/x) = 3/x - 2x
=> 5f(x) = 3/x - 2x
=> 5f(x) = (3 - 2x²)/x
=> f(x) = (3 - 2x²)/5x ---------(5)
Now ,
Putting x = 2 in eq-(5) , we get ;
=> f(x) = (3 - 2x²)/5x
=> f(2) = (3 - 2•2²)/(5•2)
=> f(2) = (3 - 8)/(5•2)
=> f(2) = -5/(5•2)
=> f(2) = -1/2