Math, asked by YudhishterRana, 1 year ago


f is a continuous function on the real line. Given that x² + (f(x) - 2)x-13.f(x) +213-3=0. Then the
value of
 f\sqrt(3)
is -(A) 2(root3 - 2)/root 3

(B) 2 (1-13)
(C) zero
(D) cannot be determined​

Answers

Answered by Sam19290
2

Step-by-step explanation:

 {x}^{2}  + (f(x) - 2)x - 13f(x) + 213 - 3 = 0

 {x}^{2}  + (f(x) - 2)x - 13f(x) + 210 = 0

 \frac{ { (\sqrt{3} })^{2} - 2 \sqrt{3}  + 210 }{ \sqrt{3} - 13 }  = f( \sqrt{3} )

 {x}^{2}  - 2x + 210 + xf(x) - 13f(x) = 0

 {x}^{2}  - 2x + 210 = (x - 13)f(x)

 \frac{ {x}^{2} - 2x + 210 }{(x - 13)} = f(x)

now put f(3^1/2)

Similar questions