Math, asked by AnanyaBaalveer, 2 days ago

f is a function defined by
\large\boxed{\sf{ \int (x) =  \binom{2x + 4 \:  \:  \:  \:  \:  \:  \:  \: x \leqslant 2}{2x - 1 \:  \:  \: \:  \:  \:  \:   \: x > 2} }}
Find f(0), f(2) and f(4).​

Answers

Answered by mathdude500
5

Appropriate Question :-

If f is a function defined by

\begin{gathered}\begin{gathered}\bf\: f(x) = \begin{cases} &\sf{2x + 4 \:  \:  \:  \:  \: when \: x \leqslant 2}  \\ \\ &\sf{2x - 1 \:  \:  \:  \:  \: when \: x > 2} \end{cases}\end{gathered}\end{gathered}

Find f(0), f,(2) and f(4).

\large\underline{\sf{Solution-}}

Given function is

\begin{gathered}\begin{gathered}\bf\: f(x) = \begin{cases} &\sf{2x + 4 \:  \:  \:  \:  \: when \: x \leqslant 2}  \\ \\ &\sf{2x - 1 \:  \:  \:  \:  \: when \: x > 2} \end{cases}\end{gathered}\end{gathered}

Calculation of f(0)

Given that,

\rm \: f(x) = 2x + 4 \:  \:  \:  \: when \: x \leqslant 2 \\

So,

\rm \: f(0) \\

\rm \:  =  \: 2 \times 0 + 4 \\

\rm \:  =  \:  0 + 4 \\

\rm \:  =  \:   4 \\

So,

\rm\implies \:\boxed{ \rm{ \:f(0) = 4 \:  \: }} \\

Calculation of f(2)

Given that

\rm \: f(x) = 2x + 4 \:  \:  \:  \: when \: x \leqslant 2 \\

So,

\rm \: f(2) \\

\rm \:  =  \: 2 \times 2 + 4 \\

\rm \:  =  \: 4 + 4 \\

\rm \:  =  \: 8 \\

Hence,

\rm\implies \:\boxed{ \rm{ \:f(2) = 8 \:  \: }} \\

Calculation of f(4)

Given that,

\rm \: f(x) = 2x - 1 \:  \:  \:  \:  \: when \: x > 2 \\

So,

\rm \: f(4) \\

\rm \:  =  \: 2 \times 4 - 1 \\

\rm \:  =  \: 8 - 1 \\

\rm \:  =  \: 7 \\

Hence,

\rm\implies \:\boxed{ \rm{ \:f(4) = 7 \:  \: }} \\

Similar questions