Math, asked by abhishek1028, 5 months ago

f matrix A = 0,2,0,0
and f(x) = 1 + x + x

2 + x

4 + x

8 + x

16, find

f(A).​

Answers

Answered by DIKU24
1

Answer:

who is this question

Step-by-step explanation:

not able to understand yrr

Answered by shruuti25
0

Answer:

f(A) =  \left[\begin{array}{cc}1&2&\\0&1\end{array}\right]

Step-by-step explanation:

Given Matrix A is:

A  =     \left[\begin{array}{cc}0&2&\\0&0\end{array}\right]

A^{2} =    \left[\begin{array}{cc}0&2&\\0&0\end{array}\right]   \left[\begin{array}{cc}0&2&\\0&0\end{array}\right]        = \left[\begin{array}{cc}0&0&\\0&0\end{array}\right]

A^{3}= A^{2}×A=   \left[\begin{array}{cc}0&2&\\0&0\end{array}\right]   \left[\begin{array}{cc}0&0&\\0&0\end{array}\right]     = \left[\begin{array}{cc}0&0&\\0&0\end{array}\right]

Similarly,   A^{4}×A^{6}×A^{8}×A^{16}=0

Then, f(x) = 1+x +x^{2} + x^{4}+ x^{8} + x^{16}

Therefore, f(A)=1  +  \left[\begin{array}{cc}0&2&\\0&0\end{array}\right] =  \left[\begin{array}{cc}1&0&\\0&1\end{array}\right] +  \left[\begin{array}{cc}0&2&\\0&0\end{array}\right] = \left[\begin{array}{cc}1&2&\\0&1\end{array}\right]

#SPJ3

Similar questions