Math, asked by shobharani16042000, 9 months ago

f:R→R is a function such that f(x+y)=f(xy)for all x,y∈R and f(34)=34then f(916)=

Answers

Answered by shadowsabers03
6

The function f:\mathbb{R}\to\mathbb{R} is defined such that,

\longrightarrow f(x+y)=f(xy)\quad\quad\dots(1)

Put y=1 in (1), then,

\longrightarrow f(x+1)=f(x\cdot1)

\longrightarrow f(x+1)=f(x)\quad\quad\dots(2)

Put y=0 in (1), then,

\longrightarrow f(x+0)=f(x\cdot0)

\longrightarrow f(x)=f(0)

And from (2) we obtain,

\longrightarrow f(0)=f(1)=f(2)=f(3)=\dots

Therefore, for some constant k,

\large\text{$\longrightarrow f(x)=k\quad\forall x\in\mathbb{W}$}

Here, since f(34)=34,

\longrightarrow f(x)=34\quad\forall x\in\mathbb{W}

Therefore,

\longrightarrow\underline{\underline{f(916)=34}}

Answered by Rudranil420
52

Answer:

Question

f:R→R is a function such that f(x+y)=f(xy)for all x,y∈R and f(34)=34then f(916)

Solution

➡f:R→R is defined such that,

=> f(x+y)=f(xy)…............(1)

➡Put y=1y=1 in (1), then,

=> f(x+1)=f(x⋅1)

=> f(x+1)=f(x)............…(2)

➡Put y=0y=0 in (1), then,

=> f(x+0)=f(x⋅0)

=> f(x)=f(0)⟶f(x)=f(0)

➡And from (2) we obtain,

=> f(0)=f(1)=f(2)=f(3)=…....

Therefore, for some constant k,

=> f(x)=k∀x∈W

Here, since f(34)=34,f(34)=34,

=> f(x)=34∀x∈W

Therefore,

\bold{\huge{\fbox{\color{blue} {</em></strong><strong><em> </em></strong><strong><em>f</em></strong><strong><em> </em></strong><strong><em>\</em></strong><strong><em>:</em></strong><strong><em> </em></strong><strong><em>(916)</em></strong><strong><em> </em></strong><strong><em>\</em></strong><strong><em>:</em></strong><strong><em> </em></strong><strong><em>=</em></strong><strong><em> </em></strong><strong><em>\</em></strong><strong><em>:</em></strong><strong><em> </em></strong><strong><em>34</em></strong><strong><em> </em></strong><strong><em>}}}}

Step-by-step explanation:

HOPE IT HELP YOU

Similar questions