Physics, asked by Anonymous, 9 months ago

❤️ɦεℓℓσ ƒɾเεɳ∂ร❤️​


ʟɪɢʜᴛ ʀᴀʏ ᴛʀᴀᴠᴇʟ ғʀᴏᴍ ᴠᴀᴄᴜᴜᴍ ɪɴᴛᴏ ᴀ ɢʟᴀss ᴡʜᴏsᴇ ʀᴇғʀᴀᴄᴛɪᴠᴇ ɪɴᴅᴇx ɪs 1.5 .ɪғ ᴛʜᴇ ᴀɴɢʟᴇ ᴏғ ɪɴᴄɪᴅᴇɴᴄᴇ ɪs 30°, ᴄᴀʟᴄᴜʟᴀᴛᴇ ᴛʜᴇ ᴀɴɢʟᴇ ᴏғ ʀᴇғʀᴀᴄᴛɪᴏɴ ɪɴsɪᴅᴇ ᴛʜᴇ ɢʟᴀss


รραɱ αɳรωεɾร ωเℓℓ ɓε ɾερσɾƭε∂ ✌️



Answers

Answered by BrainlyRonaldo
28

Answer:

\checkmark Given:

⇒ Refractive Index ( μ ) = 1.5

⇒ Angle of Incidence ( i ) = 30°

\checkmark To Find:

⇒ Angle of Refraction ( r )

\checkmark Solution:

We know that,

\bigstar Snell's Law

  • The ratio of the sine of the angle of incidence to the sine of the angle of refraction is constant

Mathematically,

\blue{\implies \sf n_1 \times sin \theta_1=n_2 \times sin \theta_2}

\green{\implies \sf \dfrac{n_2}{n_1} = \dfrac{sin \theta_1}{sin \theta_2} }

Where,

\implies \sf n_1=refractive \ index \ of \ medium \ 1

\implies \sf n_2=refractive \ index \ of \ medium \ 2

\implies \sf \theta_1=angle \ of \ incidence

\implies \sf \theta_2=angle \ of \ refraction

Note:

\pink{\sf \implies \dfrac{n_2}{n_1}= \mu}

So,

\blue{\boxed{\boxed{\sf \mu = \dfrac{sin \theta_1}{sin \theta_2}}}}

Here,

\implies \sf n_1=refractive \ index \ of \ vaccum

\implies \sf n_1=1

\implies \sf n_2=refractive \ index \ of \ glass

\implies \sf n_2=1.5

Therefore,

\sf \implies \dfrac{1.5}{1}= \mu

Hence,

\pink{\sf \implies \mu = 1.5}

So,

\red{\implies \sf \mu = \dfrac{sin \ i}{sin \ r}}

Given that,

⇒ Angle of Incidence ( i ) = 30°

We Found,

\sf \implies \mu = 1.5

Substituting the above value in the Formula,

We get,

\implies \sf 1.5 = \dfrac{sin \ 30 }{sin \ r}

\sf \implies sin \ r = \dfrac{sin \ 30 }{1.5}

We know that,

\blue{\longrightarrow \sf sin \ 30\, ^0=\dfrac{1}{2}}

So,

\sf \implies sin \ r = \dfrac{1/2}{1.5}

\sf \implies sin \ r = \dfrac{1}{2 \times 1.5}

\sf \implies sin \ r = \dfrac{1}{3}

\sf \implies sin \ r = 0.333

Therefore,

\sf \implies r = sin ^{-1}(0.333)

\purple{\sf \implies r = 19.471}

\green{\boxed{\boxed{\sf r = 19.471}}}

Since,

\sf sin ^{-1}(0.333) = 19.47120

Hence,

Angle of Refraction ( r )

⇒ r = 19.47 °

Answered by aaravshrivastwa
2

Refractive Index of Glass = μ = 1.5

Angle of Incidence = i = 30°

To Find :- Angle of Refraction

By a relation of Snell's Law.

μ = Sin i/Sin r

1.5 = Sin 30°/ Sin r

3/2 = (1/2)/ Sin r

Sin r = 1/3

r = Sin-¹(1/3)

Similar questions