Math, asked by Veerana2512, 1 year ago

F(t)=4t-5,g(t)=t^2,h(t)=1/t find thevalue for fohog(4)

Answers

Answered by slicergiza
0

Answer:

-\frac{19}{4}

Step-by-step explanation:

Given functions,

f(t)=4t-5------(1),

g(t)=t^2------(2),

h(t)=\frac{1}{t}-----(3)

∵ hog(t) = h(g(t)) = h(t^2)  ( from equation (2) ),

\implies hog(t) = \frac{1}{t^2}----(4)     ( from equation (3) ),

Thus,

fohog(t) = f(hog(t))

\implies fohog(t) = f(\frac{1}{t^2}) ( from equation (4) ),

=4(\frac{1}{t^2})-5  ( from equation (1) )

Hence,

fohog(4) = 4(\frac{1}{16})-5=\frac{1}{4}-5=\frac{1-20}{4}=-\frac{19}{4}

Answered by mysticd
1

Answer:

  \red { Value \: of \: fohog(4) }\green { =\frac{-19}{4}}

Step-by-step explanation:

f(t) = 4t - 5 ,

g(t) = ,

 h(t) = \frac{1}{t}

 fohog(x)

 = f[h(g(x))]

=f[h(t^{2})]

=f[\frac{1}{t^{2}}]\\=4\times \frac{1}{t^{2}} - 5 \: ---(1)

 Now , \red { Value \: of \: fohog(4) }

 = 4\times \frac{1}{4^{2}} - 5

 = \frac{4}{16} - 5\\= \frac{1}{4} - 5\\=\frac{1-20}{4}\\=\green { \frac{-19}{4}}

Therefore.,

  \red { Value \: of \: fohog(4) }\green { =\frac{-19}{4}}

•••♪

Similar questions