Math, asked by rohillapooja58, 2 months ago

f v = log(tan x + tan y + tan z) , find the value of : z v z dv dy y x v x ∂ ∂ + + ∂ ∂ sin 2 sin 2 sin 2 .

Answers

Answered by jaypreetkaur1313
0

Step-by-step explanation:

༒ To Prove :-

\begin{gathered} \Large\bf( {1 - tanA)}^{2} (1 - {cotA)}^{2} \\\Large= \bf(secA - cosecA) {}^{2}\end{gathered}

(1−tanA)

2

(1−cotA)

2

=(secA−cosecA)

2

___________________________

༒ Formulae Used :-

\begin{gathered} \bf \maltese \: \: \: 1 + {tan}^{2} A = sec {}^{2} A \\ \\ \bf \maltese \: \: \: 1 + {cot} {}^{2} A = {cosec}^{2} A \\ \\ \bf \maltese \: \: \: sin^2\theta+cos^2\theta=1 \\ \\ \bf \maltese \: \: \: \frac{1}{sin\theta}=cosec\theta \\ \\ \bf \maltese \: \: \: \frac{1}{cos\theta}=sec\theta\end{gathered}

✠1+tan

2

A=sec

2

A

✠1+cot

2

A=cosec

2

A

✠sin

2

θ+cos

2

θ=1

sinθ

1

=cosecθ

cosθ

1

=secθ

___________________________

༒ Proof :-

\begin{gathered} \sf {(1 - tanA) }^{2} + {(1 - cot A)}^{2} \\ \\ \sf = (1 + {tan}^{2}A - 2tanA) \\ \sf+ ( 1 + {cot}^{2} A - 2cotA) \\ \\ \sf = {sec}^{2} A - 2tanA + {cosec}^{2} A - 2cotA \\ \{ \bf\because1 + {tan}^{2} A = sec {}^{2} A \\ \bf and1 + {cot} {}^{2} A = {cosec}^{2} A \} \\ \\ = \sf {sec}^{2} A + {cosec}^{2} A - 2( tanA + cotA) \\ \\ = \sf {sec}^{2} A + {cosec}^{2} A - 2( \frac{sinA }{cosA }+ \frac{cosA}{sinA} ) \\ \\ \sf = {sec}^{2} A + {cosec}^{2} A - 2( \frac{ {sin}^{2} A + {cos}^{2}A)}{cosA \: sin A } \\ \\ = \sf {sec}^{2} + {cosec}^{2} A - 2( \frac{1}{sinA \: cos A } )\\\{\bf\because sin^2\theta+cos^2\theta=1\} \\ \\ \sf = {sec}^{2} A + {cosec}^{2} A - 2secA \: cosecA \\\\ \{\bf\because\frac{1}{sin\theta}=cosec\theta\\ \bf and\:\:\frac{1}{cos\theta}=sec\theta\} \\ \\ \sf = (secA - cosecA) {}^{2} \end{gathered}

(1−tanA)

2

+(1−cotA)

2

=(1+tan

2

A−2tanA)

+(1+cot

2

A−2cotA)

=sec

2

A−2tanA+cosec

2

A−2cotA

{∵1+tan

2

A=sec

2

A

and1+cot

2

A=cosec

2

A}

=sec

2

A+cosec

2

A−2(tanA+cotA)

=sec

2

A+cosec

2

A−2(

cosA

sinA

+

sinA

cosA

)

=sec

2

A+cosec

2

A−2(

cosAsinA

sin

2

A+cos

2

A)

=sec

2

+cosec

2

A−2(

sinAcosA

1

)

{∵sin

2

θ+cos

2

θ=1}

=sec

2

A+cosec

2

A−2secAcosecA

{∵

sinθ

1

=cosecθ

and

cosθ

1

=secθ}

=(secA−cosecA)

2

\begin{gathered} \Large \red{\mathfrak{ \text{W}hich \: \: is \: \: the \: \: required} }\\ \huge \red{\mathfrak{ \text{ A}nswer.}}\end{gathered}

Which is the required

Answer.

___________________________

Similar questions