Math, asked by 200455, 9 months ago

f(x)=1/1-x,prove that f(f(x))=x​

Answers

Answered by Mihir1001
25

Step-by-step explanation:

 \underline{ \huge\bf\red{QuestiOn} :}

 \sf If \: f(x) =  \dfrac{1}{1 - x} , then \: prove \: that \:  \boxed{ \rm f(f(x)) =  \frac{x - 1}{x} }.

 \underline{ \huge\bf\green{SolutiOn} :}

We have,

f(x) =  \dfrac{1}{1 - x}

Thus,

LHS

 \begin{aligned}  \\ & = f( \sf{f(x)}) \\  \\ & = f \left(  \frac{1}{1 - x} \right) \\  \\ & =  \frac{1}{1 -  \dfrac{1}{1 - x} } \\  \\ & =  \frac{1}{ \quad \dfrac{(1 - x) - (1)}{1 - x}  \quad} \\  \\ & =  \frac{1 - x}{ \cancel{1} - x -  \cancel{1}}   \\  \\ & =  \frac{ - (x - 1)}{ - (x)}   \\  \\ & =  \frac{x - 1}{x} \end{aligned}

= RHS

\mid \underline{\underline{\LARGE\bf\green{Brainliest \: Answer}}}\mid

❤ 50 ➕ føĺĺøw ♒ INBOX ✅

Similar questions