Math, asked by albin21102003, 18 days ago

f(x) =1÷4x-3 then find domain of f​

Answers

Answered by vikkiain
2

R -  \{{3/4 \}}

Step-by-step explanation:

given \:  \:  \:  \: f(x) =  \frac{1}{4x - 3}  \\ f(x) \:  \: is \: \:  defined \:  \: if \:  \: 4x - 3≠ 0 \\then \:  \:  \:  x ≠ \frac{3}{4}  \\ so \:  \:  \:  \: domain \:  \: of \:  \: f(x) \:  \: is \:  \: R -  \{{3/4 \}}

Answered by Anonymous
6

Given :-

 \quad \leadsto \quad \sf f ( x ) = \dfrac{1}{4x - 3}

To Find :-

Domain of  \sf f ( x )

Solution :-

At first let's see the function carefully ;

 \quad \leadsto \quad \bf f ( x ) = \dfrac{1}{4x - 3}

Here , The denominator i.e  \sf 4x - 3 shouldn't equal to 0 , to be defined!

Because , as the Denominator became 0 then we obtain  \sf f ( x ) = \dfrac{1}{0} = \infty , that is not defined . So ;

 \quad \leadsto \quad \sf 4x - 3 \neq 0

 { : \implies \quad \sf 4x \neq 3 }

 { : \implies \quad \sf x \neq \dfrac{3}{4}}

So , Here , 'x' Is defined for all values of  \sf x \in \mathbb R , except  \dfrac{3}{4} . So , let's use difference of set for the domain of  \sf f(x)

After using difference of set . Domain  \blue \{  \sf f ( x )  \blue \} is

  •  \mathbb R - \sf  \bigg\{ \dfrac{3}{4} \bigg\}

 \quad \qquad { \bigstar { \underline { \boxed { \pmb { \bf { \red { \underbrace { \therefore Domain \: of \: f ( x ) = \mathbb R \bf - \bigg\{ \dfrac{3}{4} \bigg\}}}}}}}}}{\bigstar}\quad \qquad

Similar questions