Math, asked by kennysonmawlieh, 1 day ago

f(x)= {1 + x if x ≤ 2 5 − x if x > 2 is not differentiable at x= 2.​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given function is

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:f(x) = \begin{cases} &\sf{x + 1 \:  \: when \: x \leqslant 2} \\ &\sf{5 - x \:  \: when \: x > 2} \end{cases}\end{gathered}\end{gathered}

Now, to check differentiability at x = 2, we have to check Left Hand Derivative and Right Hand Derivative.

Consider LHD at x = 2

\rm :\longmapsto\:LHD = \displaystyle\lim_{x \to 2^-}\dfrac{f(x) - f(2)}{x - 2}

\rm  \:  \: \: = \displaystyle\lim_{x \to 2^-}\dfrac{x + 1 - (2 + 1)}{x - 2}

\rm  \:  \: \: = \displaystyle\lim_{x \to 2^-}\dfrac{x + 1 - 2  - 1}{x - 2}

\rm  \:  \: \: = \displaystyle\lim_{x \to 2^-}\dfrac{x - 2}{x - 2}

\rm \:  =  \:  \:1

 \red{\boxed{\bf\implies \: \bf{ \: LHD = 1 \quad}}}

Now, Consider RHD at x = 2

\rm :\longmapsto\: RHD= \displaystyle\lim_{x \to 2^ + }\dfrac{f(x) - f(2)}{x - 2}

\rm  \:  \: = \displaystyle\lim_{x \to 2^ + }\dfrac{5 - x- (2 + 1)}{x - 2}

\rm  \:  \: = \displaystyle\lim_{x \to 2^ + }\dfrac{5 - x- 2  -  1}{x - 2}

\rm  \:  \: = \displaystyle\lim_{x \to 2^ + }\dfrac{5 - x- 3}{x - 2}

\rm  \:  \: = \displaystyle\lim_{x \to 2^ + }\dfrac{2 - x}{x - 2}

\rm  \:  \: = \displaystyle\lim_{x \to 2^ + }\dfrac{ - (x - 2)}{x - 2}

\rm \:  =  \:  \: - 1

 \red{\boxed{\bf\implies \: \bf{ \: RHD =  -  \: 1 \quad}}}

So, we concluded that

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underbrace{ \boxed{ \bf{ \: LHD \:  \ne \: RHD}}}

So, f(x) is not differentiable.

Additional Information :-

1. Every differentiable function is always continuous but every continuous function may or may not be differentiable.

For example, f(x) = | x - 1 | is continuous at x = 1 but fails to differentiable at x = 1.

Similar questions