Math, asked by Anonymous, 3 months ago

f(x)= 10X³-15 x²+10 find maxima and minima​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:f(x) =  {10x}^{3} -  {15x}^{2} + 10 -  -  - (1)

On differentiating both sides, w. r. t. x, we get

\rm :\longmapsto\: \: \dfrac{d}{dx} f(x) =  \dfrac{d}{dx}({10x}^{3} -  {15x}^{2} + 10)

\rm :\longmapsto\: \: f'(x) =  \dfrac{d}{dx}{10x}^{3} -  \dfrac{d}{dx}{15x}^{2} + \dfrac{d}{dx}10

\rm :\longmapsto\: \: f'(x) =  10\dfrac{d}{dx}{x}^{3} - 15 \dfrac{d}{dx}{x}^{2} + \dfrac{d}{dx}10

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{ \boxed{  \because \: \bf \: \dfrac{d}{dx}k \: f(x) = k \: \dfrac{d}{dx}f(x)}}

\rm :\longmapsto\:f'(x) =  {30x}^{2} - 30x  -  -  - (2

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{ \boxed{  \because \: \bf \: \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1} }}

For maxima or minima,

\rm :\longmapsto\:f'(x) = 0

\rm :\longmapsto\: {30x}^{2} - 30x = 0

\rm :\longmapsto\:30x(x - 1) = 0

\rm :\implies\:x = 0 \:  \: or \:  \: x = 1

Now, On differentiating equation (2), w . r. t. x, we get

\rm :\longmapsto\:f''(x) = 60x - 30

Now, we have to check the points x = 0 and x = 1.

Consider,

\rm :\longmapsto\:When \: x = 0

\rm :\longmapsto\:f''(0) = 60 \times 0 - 30

\rm :\longmapsto\:f''(0) =  - 30

\rm :\longmapsto\:f''(0)  < 0

\bf\implies \:f(x) \: is \: maximum \: at \: x = 0

and

\rm :\longmapsto\:Maximum \: value \:  = f(0) = 10

Consider,

\rm :\longmapsto\:When \: x = 1

\rm :\longmapsto\:f''(1) = 60 \times 1- 30

\rm :\longmapsto\:f''(1) = 60 - 30

\rm :\longmapsto\:f''(1) = 30

\rm :\longmapsto\:f''(1)   >  0

\bf\implies \:f(x) \: is \: minimum \: at \: x = 1

and

\rm :\longmapsto\:Minimum \: value \:  = f(1) = 10 - 15 + 10 = 5

Basic concept used :-

HOW TO FIND MAXIMUM AND MINIMUM VALUE OF A FUNCTION

Let given function be f(x).

  • Differentiate the given function to get f'(x)

  • let f'(x) = 0 and find critical points.

  • Then find the second derivative f''(x).

  • Apply these critical points in the second derivative.

  • The function f (x) is maximum when f''(x) < 0.

  • The function f (x) is minimum when f''(x) > 0.

Similar questions