Math, asked by sweta431573, 1 month ago

f'(x)= 12x⁵+30x² and f(4)= -23​
Please give answer in steps
This is from integration

Attachments:

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:f'(x) =  {12x}^{5} +  {30x}^{2}

can be rewritten as

\rm :\longmapsto\:\dfrac{d}{dx} f(x) =  {12x}^{5} +  {30x}^{2}

On integrating both sides, we get

\rm :\longmapsto\:\displaystyle\int\sf \dfrac{d}{dx} f(x)  \: dx=\displaystyle\int\sf ({12x}^{5} +  {30x}^{2}) \: dx

\rm :\longmapsto\:f(x)  \: =\displaystyle\int\sf {12x}^{5}dx + \displaystyle\int\sf  {30x}^{2} \: dx

\rm :\longmapsto\:f(x)  \: =12\displaystyle\int\sf {x}^{5}dx +30 \displaystyle\int\sf  {x}^{2} \: dx

We know that

\boxed{ \sf{ \:\displaystyle\int\sf  {x}^{n}dx =  \frac{ {x}^{n + 1} }{n + 1} + c}}

So, using this

\rm :\longmapsto\:f(x) = 12 \times \dfrac{ {x}^{5 + 1} }{5 + 1}  + 30 \times \dfrac{ {x}^{2 + 1} }{2 + 1}  + k

\rm :\longmapsto\:f(x) = 12 \times \dfrac{ {x}^{6} }{6}  + 30 \times \dfrac{ {x}^{3} }{3}  + k

\rm :\longmapsto\:f(x) =  {2x}^{6} +  {10x}^{3} + k

Now, given that

\rm :\longmapsto\:f(4) =  - 23

\rm :\longmapsto\:{2(4)}^{6} +  {10(4)}^{3} + k =  - 23

\rm :\longmapsto\:8192 + 640 + k =  - 23

\rm :\longmapsto\:8832 + k =  - 23

\rm :\longmapsto\:k =  - 23 - 8832

\bf :\longmapsto\:k =   - 8855

Thus,

\bf :\longmapsto\:f(x) =  {2x}^{6} +  {10x}^{3} - 8855

Additional Information :-

\boxed{ \sf{ \:\displaystyle\int\sf k \: dx = kx + c}}

\boxed{ \sf{ \:\displaystyle\int\sf sinx \: dx =  - cosx + c}}

\boxed{ \sf{ \:\displaystyle\int\sf cosx \: dx =  sinx + c}}

\boxed{ \sf{ \:\displaystyle\int\sf cotx \: dx =  log \: sinx + c}}

\boxed{ \sf{ \:\displaystyle\int\sf tanx \: dx =  log \: secx + c}}

\boxed{ \sf{ \:\displaystyle\int\sf secx \: dx =  log \: (secx + tanx) + c}}

\boxed{ \sf{ \:\displaystyle\int\sf cosecx \: dx =  log \: (cosecx - cotx) + c}}

\boxed{ \sf{ \:\displaystyle\int\sf  {sec}^{2}x  \: dx =  tanx + c}}

\boxed{ \sf{ \:\displaystyle\int\sf  {cosec}^{2}x  \: dx =   -  \: cotx + c}}

Similar questions