Math, asked by sumedhadessai04, 3 months ago

f(x)=2x-1÷5x-3 find range and domain​

Answers

Answered by Anonymous
3

  \large \bf \star \:  \:  \: {{\underline{ \underline{{Given}}}}} \:  \:  \:  \star \\  \\  \\   \natural \:  \:  \:  \:  \tt \: \:  \:  \tt \: f(x) =  \frac{2x - 1}{5x - 3}  \\  \\  \\  \\ \large \bf  \star \:  \:  \: {{\underline{ \underline{{ Solution }}}}} \:  \:  \:  \star\\  \\  \\  \sf \:  \Box \:  \:  \:  \: { \underline{Domain  \:  \:  of \:  \:  the  \:  \: function \: (D_f) : }} \\  \\ \tt \:  denominator \:  \: can \:  \: never \:  \: be \:  \: zero \:  \: for \:  \: it \:  \: to \:  \: be \:  \: a \:  \: function \\ \tt \: hence,  \\   \tt5x - 3 \not = 0 \\  \\  \implies \tt \: x \not =  \frac{3}{5}  \\  \\ \\   \bf\therefore \:  \:   \tt \: Function  \:  \: is \:  \:  defined   \: ,   \: {  \: \forall  \: x  \: \in  \:  \: \R  -  \bigg \{ \frac{3}{5}  \bigg\} } \\  \\  \tt  \bf \therefore \:  \:  \:   Domain \:  \:  of  \:  \: function  \:  \:  \: \R  -  \bigg \{ \frac{3}{5}  \bigg\}\\  \\  \\  \Box \sf \:  \:  \:  \: { \underline{Range \:  \:  of \:  \:  the  \:  \: function \: (R_f) : }} \\  \\  \tt \: We \:  \:  will  \:  \: get \:  \:  any \:  \:  real  \:  \: value  \:  \: of  \:  \: f(x) \:  \: in \:  \: its \:  \: domain \\  \\  \\  \bf \therefore \:  \:  \: Range \:  \:  of  \:  \: function  \:  \: \R \\  \\  \\  \\ \large \bf \star \:  \:  \: {{\underline{ \underline{{Concept  \:  \: Booster}}}}} \:  \:  \:  \star \\  \\  \\   \tt \: Let's  \:  \: have  \:  \: a  \:  \: look  \:  \: on  \:  \: its \:  \:  Graph \\  \\  \tt \: we \: \:  can \:  \: see \:  \: easily \:  \: see \:   \: from \:  \: its \:  \: graph \:  \: that \: \: function \:  \: is \:  \: undefind \:  \: at \:  \: x =  \frac{3}{5}  \\  \\  \\  \mathcal{ \small \colorbox{aqua}{@StayHigh}}

Attachments:
Similar questions