Math, asked by arjunskurup, 1 year ago

f(x)=2x^4+x^3-14x^2-19x-6 if two of its zeros are-2 and -1

Answers

Answered by EmadAhamed
3
↑ Here is your answer 
_____________________________________________________________
_____________________________________________________________

(x+2)(x+1)

x(x+1) + 2(x+1)

x^2 + x + 2x + 2

x^2 + 3x + 2

Now,

2x^4+x^3-14x^2-19x-6 / x^2 + 3x + 2

The quotient comes out as:

2x^2 - 5x - 3 = 0

By solving the qudratic equation,

x = 3, x = -1/2
Answered by ria113
7
Hey !!

Division is in the image..

Here is your answer...

f(x) =  {2x}^{4} +  {x}^{3} -  {14x}^{2} - 19x - 6 \\  \\ x = ( - 2) \:  \: and \:  \: x  = ( - 1) \\  \\ x + 2 = 0 \:  \:  \: and \:  \:  \: x + 1 = 0 \\  \\  = (x + 2)(x + 1)  \\  \\  =  {x}^{2}  + 2x + x + 2 \\  \\  =  {x}^{2}  + 3x + 2 \\  \\ dividing \:  \: f(x) \:  \: by \:  \:  {x}^{2}  + 3x + 2 \:  \: you \:  \: will \:  \: get \:  \: ...... \\  \\ 2 {x}^{2}  - 5x - 3 \\  \\ now \:  \: factorize \:  \: it \\  \\  \\ 2 {x}^{2}  - 5x  - 3 = 0 \\  \\ 2 {x}^{2}  - 6x  + x   - 3 = 0 \\  \\ 2x(x - 3) + 1(x - 3) = 0 \\  \\ (2x + 1)(x - 3) = 0 \\  \\ (2x + 1) = 0 \:  \:  \:  \: and \:  \:  \: (x - 3) = 0 \\  \\ x =  \frac{ - 1}{2}  \:  \: \: and \:  \:  \:  x = 3


Hope it helps you...

✡ Thanks ✡
Attachments:

EmadAhamed: Awesome! *_*
ria113: hehe.. thnx bhaiya ^-^
Similar questions