f(x) =2x and ga(x) =1/3x
Answers
Answered by
0
Answer:
If f(x)=cot−1(3x−x31−3x2) and g(x)=cos−1(1−x21+x2) then limx→af(x)−f(a)g(x)−g(a)
Step-by-step explanation:
tanθ=a
0<tanθ<12
0<θ<π6
x=tanθ
f(x)=cot−1(tan3θ)=π2−tan−1tan3θ
=π2−3θ
g(x)=cos−1cos2θ=2θ
limx→af(x)⋅f(a)g(x)⋅g(a)⋅x−ax−a=f'(a)g'(a)
f(x)=π2−3tan−1x
diff. with respect to x
f'(x)=0−31+x2
g(x)=2tan−1x
diff. with respect to x
g'(x)=21+x2
f'(a)g'(a)=−31+a3⋅1+a22=−32
Similar questions