Physics, asked by StrongGirl, 9 months ago

f(x) = -(3/4)x2-8x3-42/5x2+105. Calculate local maxima and local minima.

Answers

Answered by ıtʑFᴇᴇʟɓᴇãᴛ
5

\mathtt{\huge{\underline{\red{Correct\:Question\:?}}}}

f(x) =   \dfrac{ - 3}{4}  {x}^{4}  -  {8x}^{3}  -  \dfrac{45}{2}  {x}^{2}  + 105

\mathtt{\huge{\underline{\green{Answer:-}}}}

➡ The Point of local maxima is -5 & point of local minima is -3.

\mathtt{\huge{\underline{\orange {Solution :-}}}}

f(x) =   \dfrac{ - 3}{4}  {x}^{4}  -  {8x}^{3}  -  \dfrac{45}{2}  {x}^{2}  + 105}

f'(x) =  ( \frac{ - 3}{4} ) \times 4 {x}^{3}  -  8 \times  {3x}^{2}  - ( \frac{45}{2} ) \times 2x

 {- 3x}^{3}  -  {24x}^{2}  - 45

 {- 3(x ^{2}  + 8x + 15)}

 {- 3( {x}^{2}  +  5x + 3x + 15) }

 {- 3x(x + 5) + 3(x ^{2} + 5) }

 - 3(x + 5)(x + 3)

Now, for the following critical point f'=0

x =  - 5 \: and \: x =  - 3

Hence, For maxima is -5 & for minima is -3.

Answered by BrainlyTornado
8

CORRECT QUESTION:

f(x) = - (3/4)x⁴ - 8x³ - 45/2x² + 105. Calculate local maxima and local minima.

ANSWER:

  • Local maxima at x = 0, value = 105

  • Local maxima at x = - 5, value = 73.75

  • Local minima at x = - 3, value = 57.75

GIVEN:

  • f(x) = - (3/4)x⁴ - 8x³ - 45/2x² + 105

TO FIND:

  • Local maxima and local minima.

EXPLANATION:

\sf f(x)= -\dfrac{3}{4}x^4 - 8x^3 - \dfrac{45}{2} x^2 + 105

Differentiate w.r.t x

\sf f(x)= -4\times\dfrac{3}{4}x^3 - 3(8)x^2 - 2\times\dfrac{45}{2} x

\sf f'(x)= -3x^3 - 24x^2 - 45 x

\sf f'(x)= -3x(x^2 + 8x+ 15 )

By splitting the middle term

\sf f'(x)= -3x(x^2 + 5x + 3x +15 )

\sf f'(x)= -3x(x(x + 5) + 3(x + 5))

\sf f'(x)= -3x(x+3)(x + 5)

Put f'(x) = 0

\sf 0= -3x(x+3)(x + 5)

\sf-3x = 0

\sf x = 0

\sf x + 3 = 0

\sf x = - 3

\sf x + 5 = 0

\sf x = -5

\sf f'(x)= -3x^3 - 24x^2 - 45 x

Differentiate w.r.t x

\sf f''(x)= -9x^2 - 48x - 45

Substitute x = 0

\sf f''(0)= -9(0)^2 - 48(0) - 45

\sf f''(0)= 0-0 - 45

\sf f''(0)= -45

\sf f''(0) < 0

f(x) is maximum at x = 0

\sf f''(x)= -9x^2 - 48x - 45

Substitute x = - 5

\sf f''(x)= -9(-5)^2 - 48(-5) - 45

\sf f''(x)= -9(25) +48(5) - 45

\sf f''(x)= -225 + 240  - 45

\sf f''(x)= 15  - 45

\sf f''(x)=-30

\sf f''(- 5) < 0

f(x) is maximum at x = - 5

\sf f''(x)= -9x^2 - 48x - 45

Substitute x = - 3

\sf f''(x)= -9(-3)^2 - 48(-3) - 45

\sf f''(x)= -9(9) +48(3) - 45

\sf f''(x)= -81 + 144  - 45

\sf f''(x)= -126+144

\sf f''(x)=18

\sf f''(- 3) > 0

f(x) is minimum at x = - 3

Hence there are two local maximas at x = 0, x = - 5 and a local minima at x = - 3

\sf f(x)= -\dfrac{3}{4}x^4 - 8x^3 - \dfrac{45}{2} x^2 + 105

Substitute x = 0

\sf f(0)= -\dfrac{3}{4}(0)^4 - 8(0)^3 - \dfrac{45}{2}( 0)^2 + 105

\sf f(0)= 105

\sf f(x)= -\dfrac{3}{4}x^4 - 8x^3 - \dfrac{45}{2} x^2 + 105

Substitute x = - 5

\sf f(-5)= -\dfrac{3}{4}(-5)^4 - 8(-5)^3 - \dfrac{45}{2}(-5)^2 + 105

\sf f(-5)= -\dfrac{3}{4}(625) - 8(-125) - \dfrac{45}{2}(25)+ 105

\sf f(-5)= -\dfrac{1875}{4}+ 1000 - \dfrac{1125}{2} + 105

\sf f(-5)= -468.75+ 1000 -562.5 + 105

\sf f(-5)= -1031.25+ 1000 + 105

\sf f(-5)= -31.25+ 105

\sf f(-5)= 73.75

\sf f(x)= -\dfrac{3}{4}x^4 - 8x^3 - \dfrac{45}{2} x^2 + 105

Substitute x = - 3

\sf f(-3)= -\dfrac{3}{4}(-3)^4 - 8(-3)^3 - \dfrac{45}{2}(-3)^2 + 105

\sf f(-3)= -\dfrac{3}{4}(81) - 8(-27)- \dfrac{45}{2}(9) + 105

\sf f(-3)= -\dfrac{243}{4}+216 - \dfrac{405}{2} + 105

\sf f(-3)= -60.75+ 216 -202.5 + 105

\sf f(-3)= -263.25+ 321

\sf f(-3)= 57.75

Hence the two local maximas at x = 0, (value = 105), at x = - 5(value = 73.75) and a local minima at x = - 3(value = 57.75).

Similar questions